Logo Search packages:      
Sourcecode: wireshark version File versions  Download package

packet-rpc.c

/* packet-rpc.c
 * Routines for rpc dissection
 * Copyright 1999, Uwe Girlich <Uwe.Girlich@philosys.de>
 *
 * $Id: packet-rpc.c 19027 2006-08-25 08:10:35Z guy $
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * Copied from packet-smb.c
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include <glib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <epan/packet.h>
#include <epan/conversation.h>
#include <epan/emem.h>
#include "packet-rpc.h"
#include "packet-frame.h"
#include "packet-tcp.h"
#include <epan/prefs.h>
#include <epan/reassemble.h>
#include <epan/dissectors/rpc_defrag.h>
#include "packet-nfs.h"
#include <epan/tap.h>
#include <epan/strutil.h>

/*
 * See:
 *
 *    RFC 1831, "RPC: Remote Procedure Call Protocol Specification
 *    Version 2";
 *
 *    RFC 1832, "XDR: External Data Representation Standard";
 *
 *    RFC 2203, "RPCSEC_GSS Protocol Specification".
 *
 * See also
 *
 *    RFC 2695, "Authentication Mechanisms for ONC RPC"
 *
 *    although we don't currently dissect AUTH_DES or AUTH_KERB.
 */

/* desegmentation of RPC over TCP */
static gboolean rpc_desegment = TRUE;

/* defragmentation of fragmented RPC over TCP records */
static gboolean rpc_defragment = TRUE;

/* try to dissect RPC packets for programs that are not known
 * (proprietary ones) by wireshark.
 */
static gboolean rpc_dissect_unknown_programs = FALSE;

/* try to find RPC fragment start if normal decode fails
 * (good when starting decode of mid-stream capture)
 */
static gboolean rpc_find_fragment_start = FALSE;

static struct true_false_string yesno = { "Yes", "No" };

static int rpc_tap = -1;

static const value_string rpc_msg_type[] = {
      { RPC_CALL, "Call" },
      { RPC_REPLY, "Reply" },
      { 0, NULL }
};

static const value_string rpc_reply_state[] = {
      { MSG_ACCEPTED, "accepted" },
      { MSG_DENIED, "denied" },
      { 0, NULL }
};

const value_string rpc_auth_flavor[] = {
      { AUTH_NULL, "AUTH_NULL" },
      { AUTH_UNIX, "AUTH_UNIX" },
      { AUTH_SHORT, "AUTH_SHORT" },
      { AUTH_DES, "AUTH_DES" },
      { RPCSEC_GSS, "RPCSEC_GSS" },
      { AUTH_GSSAPI, "AUTH_GSSAPI" },
      { 0, NULL }
};

static const value_string rpc_authgss_proc[] = {
      { RPCSEC_GSS_DATA, "RPCSEC_GSS_DATA" },
      { RPCSEC_GSS_INIT, "RPCSEC_GSS_INIT" },
      { RPCSEC_GSS_CONTINUE_INIT, "RPCSEC_GSS_CONTINUE_INIT" },
      { RPCSEC_GSS_DESTROY, "RPCSEC_GSS_DESTROY" },
      { 0, NULL }
};

static const value_string rpc_authgssapi_proc[] = {
      { AUTH_GSSAPI_EXIT, "AUTH_GSSAPI_EXIT" },
      { AUTH_GSSAPI_INIT, "AUTH_GSSAPI_INIT" },
      { AUTH_GSSAPI_CONTINUE_INIT, "AUTH_GSSAPI_CONTINUE_INIT" },
      { AUTH_GSSAPI_MSG, "AUTH_GSSAPI_MSG" },
      { AUTH_GSSAPI_DESTROY, "AUTH_GSSAPI_DESTROY" },
      { 0, NULL }
};

value_string rpc_authgss_svc[] = {
      { RPCSEC_GSS_SVC_NONE, "rpcsec_gss_svc_none" },
      { RPCSEC_GSS_SVC_INTEGRITY, "rpcsec_gss_svc_integrity" },
      { RPCSEC_GSS_SVC_PRIVACY, "rpcsec_gss_svc_privacy" },
      { 0, NULL }
};

static const value_string rpc_accept_state[] = {
      { SUCCESS, "RPC executed successfully" },
      { PROG_UNAVAIL, "remote hasn't exported program" },
      { PROG_MISMATCH, "remote can't support version #" },
      { PROC_UNAVAIL, "program can't support procedure" },
      { GARBAGE_ARGS, "procedure can't decode params" },
      { SYSTEM_ERROR, "system errors like memory allocation failure" },
      { 0, NULL }
};

static const value_string rpc_reject_state[] = {
      { RPC_MISMATCH, "RPC_MISMATCH" },
      { AUTH_ERROR, "AUTH_ERROR" },
      { 0, NULL }
};

static const value_string rpc_auth_state[] = {
      { AUTH_BADCRED, "bad credential (seal broken)" },
      { AUTH_REJECTEDCRED, "client must begin new session" },
      { AUTH_BADVERF, "bad verifier (seal broken)" },
      { AUTH_REJECTEDVERF, "verifier expired or replayed" },
      { AUTH_TOOWEAK, "rejected for security reasons" },
      { RPCSEC_GSSCREDPROB, "GSS credential problem" },
      { RPCSEC_GSSCTXPROB, "GSS context problem" },
      { 0, NULL }
};

static const value_string rpc_authdes_namekind[] = {
      { AUTHDES_NAMEKIND_FULLNAME, "ADN_FULLNAME" },
      { AUTHDES_NAMEKIND_NICKNAME, "ADN_NICKNAME" },
      { 0, NULL }
};

/* the protocol number */
static int proto_rpc = -1;
static int hf_rpc_reqframe = -1;
static int hf_rpc_repframe = -1;
static int hf_rpc_lastfrag = -1;
static int hf_rpc_fraglen = -1;
static int hf_rpc_xid = -1;
static int hf_rpc_msgtype = -1;
static int hf_rpc_version = -1;
static int hf_rpc_version_min = -1;
static int hf_rpc_version_max = -1;
static int hf_rpc_program = -1;
static int hf_rpc_programversion = -1;
static int hf_rpc_programversion_min = -1;
static int hf_rpc_programversion_max = -1;
static int hf_rpc_procedure = -1;
static int hf_rpc_auth_flavor = -1;
static int hf_rpc_auth_length = -1;
static int hf_rpc_auth_machinename = -1;
static int hf_rpc_auth_stamp = -1;
static int hf_rpc_auth_uid = -1;
static int hf_rpc_auth_gid = -1;
static int hf_rpc_authgss_v = -1;
static int hf_rpc_authgss_proc = -1;
static int hf_rpc_authgss_seq = -1;
static int hf_rpc_authgss_svc = -1;
static int hf_rpc_authgss_ctx = -1;
static int hf_rpc_authgss_major = -1;
static int hf_rpc_authgss_minor = -1;
static int hf_rpc_authgss_window = -1;
static int hf_rpc_authgss_token_length = -1;
static int hf_rpc_authgss_data_length = -1;
static int hf_rpc_authgss_data = -1;
static int hf_rpc_authgss_checksum = -1;
static int hf_rpc_authgssapi_v = -1;
static int hf_rpc_authgssapi_msg = -1;
static int hf_rpc_authgssapi_msgv = -1;
static int hf_rpc_authgssapi_handle = -1;
static int hf_rpc_authgssapi_isn = -1;
static int hf_rpc_authdes_namekind = -1;
static int hf_rpc_authdes_netname = -1;
static int hf_rpc_authdes_convkey = -1;
static int hf_rpc_authdes_window = -1;
static int hf_rpc_authdes_nickname = -1;
static int hf_rpc_authdes_timestamp = -1;
static int hf_rpc_authdes_windowverf = -1;
static int hf_rpc_authdes_timeverf = -1;
static int hf_rpc_state_accept = -1;
static int hf_rpc_state_reply = -1;
static int hf_rpc_state_reject = -1;
static int hf_rpc_state_auth = -1;
static int hf_rpc_dup = -1;
static int hf_rpc_call_dup = -1;
static int hf_rpc_reply_dup = -1;
static int hf_rpc_value_follows = -1;
static int hf_rpc_array_len = -1;
static int hf_rpc_time = -1;
static int hf_rpc_fragments = -1;
static int hf_rpc_fragment = -1;
static int hf_rpc_fragment_overlap = -1;
static int hf_rpc_fragment_overlap_conflict = -1;
static int hf_rpc_fragment_multiple_tails = -1;
static int hf_rpc_fragment_too_long_fragment = -1;
static int hf_rpc_fragment_error = -1;

static gint ett_rpc = -1;
static gint ett_rpc_unknown_program = -1;
static gint ett_rpc_fragments = -1;
static gint ett_rpc_fragment = -1;
static gint ett_rpc_fraghdr = -1;
static gint ett_rpc_string = -1;
static gint ett_rpc_cred = -1;
static gint ett_rpc_verf = -1;
static gint ett_rpc_gids = -1;
static gint ett_rpc_gss_token = -1;
static gint ett_rpc_gss_data = -1;
static gint ett_rpc_array = -1;
static gint ett_rpc_authgssapi_msg = -1;

static dissector_handle_t rpc_tcp_handle;
static dissector_handle_t rpc_handle;
static dissector_handle_t gssapi_handle;
static dissector_handle_t data_handle;

static guint max_rpc_tcp_pdu_size = 262144;

static const fragment_items rpc_frag_items = {
      &ett_rpc_fragment,
      &ett_rpc_fragments,
      &hf_rpc_fragments,
      &hf_rpc_fragment,
      &hf_rpc_fragment_overlap,
      &hf_rpc_fragment_overlap_conflict,
      &hf_rpc_fragment_multiple_tails,
      &hf_rpc_fragment_too_long_fragment,
      &hf_rpc_fragment_error,
      NULL,
      "fragments"
};

/* Hash table with info on RPC program numbers */
GHashTable *rpc_progs = NULL;

/* Hash table with info on RPC procedure numbers */
GHashTable *rpc_procs = NULL;

static void dissect_rpc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);
static void dissect_rpc_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);

/***********************************/
/* Hash array with procedure names */
/***********************************/

/* compare 2 keys */
static gint
rpc_proc_equal(gconstpointer k1, gconstpointer k2)
{
      const rpc_proc_info_key* key1 = (const rpc_proc_info_key*) k1;
      const rpc_proc_info_key* key2 = (const rpc_proc_info_key*) k2;

      return ((key1->prog == key2->prog &&
            key1->vers == key2->vers &&
            key1->proc == key2->proc) ?
      TRUE : FALSE);
}

/* calculate a hash key */
static guint
rpc_proc_hash(gconstpointer k)
{
      const rpc_proc_info_key* key = (const rpc_proc_info_key*) k;

      return (key->prog ^ (key->vers<<16) ^ (key->proc<<24));
}


/* insert some entries */
void
rpc_init_proc_table(guint prog, guint vers, const vsff *proc_table,
    int procedure_hf)
{
      rpc_prog_info_key rpc_prog_key;
      rpc_prog_info_value *rpc_prog;
      const vsff *proc;

      /*
       * Add the operation number hfinfo value for this version of the
       * program.
       */
      rpc_prog_key.prog = prog;
      rpc_prog = g_hash_table_lookup(rpc_progs, &rpc_prog_key);
      DISSECTOR_ASSERT(rpc_prog != NULL);
      rpc_prog->procedure_hfs = g_array_set_size(rpc_prog->procedure_hfs,
          vers);
      g_array_insert_val(rpc_prog->procedure_hfs, vers, procedure_hf);

      for (proc = proc_table ; proc->strptr!=NULL; proc++) {
            rpc_proc_info_key *key;
            rpc_proc_info_value *value;

            key = (rpc_proc_info_key *) g_malloc(sizeof(rpc_proc_info_key));
            key->prog = prog;
            key->vers = vers;
            key->proc = proc->value;

            value = (rpc_proc_info_value *) g_malloc(sizeof(rpc_proc_info_value));
            value->name = proc->strptr;
            value->dissect_call = proc->dissect_call;
            value->dissect_reply = proc->dissect_reply;

            g_hash_table_insert(rpc_procs,key,value);
      }
}


/*    return the name associated with a previously registered procedure. */
const char *
rpc_proc_name(guint32 prog, guint32 vers, guint32 proc)
{
      rpc_proc_info_key key;
      rpc_proc_info_value *value;
      char *procname;

      procname=ep_alloc(20);
      key.prog = prog;
      key.vers = vers;
      key.proc = proc;

      if ((value = g_hash_table_lookup(rpc_procs,&key)) != NULL)
            procname = (char *)value->name;
      else {
            /* happens only with strange program versions or
               non-existing dissectors */
            g_snprintf(procname, 20, "proc-%u", key.proc);
      }
      return procname;
}

/*----------------------------------------*/
/* end of Hash array with procedure names */
/*----------------------------------------*/


/*********************************/
/* Hash array with program names */
/*********************************/

/* compare 2 keys */
static gint
rpc_prog_equal(gconstpointer k1, gconstpointer k2)
{
      const rpc_prog_info_key* key1 = (const rpc_prog_info_key*) k1;
      const rpc_prog_info_key* key2 = (const rpc_prog_info_key*) k2;

      return ((key1->prog == key2->prog) ?
      TRUE : FALSE);
}


/* calculate a hash key */
static guint
rpc_prog_hash(gconstpointer k)
{
      const rpc_prog_info_key* key = (const rpc_prog_info_key*) k;

      return (key->prog);
}


void
rpc_init_prog(int proto, guint32 prog, int ett)
{
      rpc_prog_info_key *key;
      rpc_prog_info_value *value;

      key = (rpc_prog_info_key *) g_malloc(sizeof(rpc_prog_info_key));
      key->prog = prog;

      value = (rpc_prog_info_value *) g_malloc(sizeof(rpc_prog_info_value));
      value->proto = find_protocol_by_id(proto);
      value->proto_id = proto;
      value->ett = ett;
      value->progname = proto_get_protocol_short_name(value->proto);
      value->procedure_hfs = g_array_new(FALSE, TRUE, sizeof (int));

      g_hash_table_insert(rpc_progs,key,value);
}



/*    return the hf_field associated with a previously registered program.
*/
int rpc_prog_hf(guint32 prog, guint32 vers)
{
      rpc_prog_info_key       rpc_prog_key;
      rpc_prog_info_value     *rpc_prog;

      rpc_prog_key.prog = prog;
      if ((rpc_prog = g_hash_table_lookup(rpc_progs,&rpc_prog_key))) {
            return g_array_index(rpc_prog->procedure_hfs, int, vers);
      }
      return -1;
}

/*    return the name associated with a previously registered program. This
      should probably eventually be expanded to use the rpc YP/NIS map
      so that it can give names for programs not handled by wireshark */
const char *rpc_prog_name(guint32 prog)
{
      const char *progname = NULL;
      rpc_prog_info_key       rpc_prog_key;
      rpc_prog_info_value     *rpc_prog;

      rpc_prog_key.prog = prog;
      if ((rpc_prog = g_hash_table_lookup(rpc_progs,&rpc_prog_key)) == NULL) {
            progname = "Unknown";
      }
      else {
            progname = rpc_prog->progname;
      }
      return progname;
}


/*--------------------------------------*/
/* end of Hash array with program names */
/*--------------------------------------*/

/* One of these structures are created for each conversation that contains
 * RPC and contains the state we need to maintain for the conversation.
 */
typedef struct _rpc_conv_info_t {
        emem_tree_t *xids;
} rpc_conv_info_t;


unsigned int
rpc_roundup(unsigned int a)
{
      unsigned int mod = a % 4;
        unsigned int ret;
      ret = a + ((mod)? 4-mod : 0);
        /* Check for overflow */
        if (ret < a)
            THROW(ReportedBoundsError);
      return ret;
}


int
dissect_rpc_bool(tvbuff_t *tvb, proto_tree *tree,
int hfindex, int offset)
{
      if (tree)
            proto_tree_add_item(tree, hfindex, tvb, offset, 4, FALSE);
      return offset + 4;
}


int
dissect_rpc_uint32(tvbuff_t *tvb, proto_tree *tree,
int hfindex, int offset)
{
      if (tree)
            proto_tree_add_item(tree, hfindex, tvb, offset, 4, FALSE);
      return offset + 4;
}


int
dissect_rpc_uint64(tvbuff_t *tvb, proto_tree *tree,
int hfindex, int offset)
{
      header_field_info *hfinfo;

      hfinfo = proto_registrar_get_nth(hfindex);
      DISSECTOR_ASSERT(hfinfo->type == FT_UINT64);
      if (tree)
            proto_tree_add_item(tree, hfindex, tvb, offset, 8, FALSE);

      return offset + 8;
}

/*
 * We want to make this function available outside this file and
 * allow callers to pass a dissection function for the opaque data
 */
int
dissect_rpc_opaque_data(tvbuff_t *tvb, int offset,
    proto_tree *tree,
    packet_info *pinfo,
    int hfindex,
    gboolean fixed_length, guint32 length,
    gboolean string_data, char **string_buffer_ret,
    dissect_function_t *dissect_it)
{
      int data_offset;
      proto_item *string_item = NULL;
      proto_tree *string_tree = NULL;

      guint32 string_length;
      guint32 string_length_full;
      guint32 string_length_packet;
      guint32 string_length_captured;
      guint32 string_length_copy;

      int fill_truncated;
      guint32 fill_length;
      guint32 fill_length_packet;
      guint32 fill_length_captured;
      guint32 fill_length_copy;

      int exception = 0;

      char *string_buffer = NULL;
      char *string_buffer_print = NULL;

      if (fixed_length) {
            string_length = length;
            data_offset = offset;
      }
      else {
            string_length = tvb_get_ntohl(tvb,offset+0);
            data_offset = offset + 4;
      }
      string_length_captured = tvb_length_remaining(tvb, data_offset);
      string_length_packet = tvb_reported_length_remaining(tvb, data_offset);
      string_length_full = rpc_roundup(string_length);
      if (string_length_captured < string_length) {
            /* truncated string */
            string_length_copy = string_length_captured;
            fill_truncated = 2;
            fill_length = 0;
            fill_length_copy = 0;
            if (string_length_packet < string_length)
                  exception = ReportedBoundsError;
            else
                  exception = BoundsError;
      }
      else {
            /* full string data */
            string_length_copy = string_length;
            fill_length = string_length_full - string_length;
            fill_length_captured = tvb_length_remaining(tvb,
                data_offset + string_length);
            fill_length_packet = tvb_reported_length_remaining(tvb,
                data_offset + string_length);
            if (fill_length_captured < fill_length) {
                  /* truncated fill bytes */
                  fill_length_copy = fill_length_packet;
                  fill_truncated = 1;
                  if (fill_length_packet < fill_length)
                        exception = ReportedBoundsError;
                  else
                        exception = BoundsError;
            }
            else {
                  /* full fill bytes */
                  fill_length_copy = fill_length;
                  fill_truncated = 0;
            }
      }

      /*
       * If we were passed a dissection routine, make a TVB of the data
       * and call the dissection routine
       */

        if (dissect_it) {
          tvbuff_t *opaque_tvb;

          opaque_tvb = tvb_new_subset(tvb, data_offset, string_length_copy,
                                      string_length);

          return (*dissect_it)(opaque_tvb, offset, pinfo, tree);

        }

      if (string_data) {
            char *tmpstr;
            tmpstr = tvb_get_ephemeral_string(tvb, data_offset, string_length_copy);
            string_buffer = memcpy(ep_alloc(string_length_copy+1), tmpstr, string_length_copy);
      } else {
            string_buffer = tvb_memcpy(tvb, ep_alloc(string_length_copy+1), data_offset, string_length_copy);
      }
      string_buffer[string_length_copy] = '\0';
      /* calculate a nice printable string */
      if (string_length) {
            if (string_length != string_length_copy) {
                  if (string_data) {
                        char *formatted;

                        formatted = format_text(string_buffer, strlen(string_buffer));
                        /* alloc maximum data area */
#define STRING_BUFFER_PRINT_MAX_LEN (strlen(formatted)+12+1)
                        string_buffer_print = (char*)ep_alloc(STRING_BUFFER_PRINT_MAX_LEN);
                        /* copy over the data and append <TRUNCATED> */
                        g_snprintf(string_buffer_print, STRING_BUFFER_PRINT_MAX_LEN, "%s<TRUNCATED>", formatted);
                  } else {
                        string_buffer_print="<DATA><TRUNCATED>";
                  }
            } else {
                  if (string_data) {
                        string_buffer_print =
                            ep_strdup(format_text(string_buffer, strlen(string_buffer)));
                  } else {
                        string_buffer_print="<DATA>";
                  }
            }
      } else {
            string_buffer_print="<EMPTY>";
      }

      if (tree) {
            string_item = proto_tree_add_text(tree, tvb,offset+0, -1,
                "%s: %s", proto_registrar_get_name(hfindex),
                string_buffer_print);
            string_tree = proto_item_add_subtree(string_item,
                ett_rpc_string);
      }
      if (!fixed_length) {
            if (string_tree)
                  proto_tree_add_text(string_tree, tvb,offset+0,4,
                        "length: %u", string_length);
            offset += 4;
      }

      if (string_tree) {
            if (string_data) {
                  proto_tree_add_string_format(string_tree,
                      hfindex, tvb, offset, string_length_copy,
                      string_buffer,
                      "contents: %s", string_buffer_print);
            } else {
                  proto_tree_add_bytes_format(string_tree,
                      hfindex, tvb, offset, string_length_copy,
                      string_buffer,
                      "contents: %s", string_buffer_print);
            }
      }

      offset += string_length_copy;

      if (fill_length) {
            if (string_tree) {
                  if (fill_truncated) {
                        proto_tree_add_text(string_tree, tvb,
                        offset,fill_length_copy,
                        "fill bytes: opaque data<TRUNCATED>");
                  }
                  else {
                        proto_tree_add_text(string_tree, tvb,
                        offset,fill_length_copy,
                        "fill bytes: opaque data");
                  }
            }
            offset += fill_length_copy;
      }

      if (string_item)
            proto_item_set_end(string_item, tvb, offset);

      if (string_buffer_ret != NULL)
            *string_buffer_ret = string_buffer_print;

      /*
       * If the data was truncated, throw the appropriate exception,
       * so that dissection stops and the frame is properly marked.
       */
      if (exception != 0)
            THROW(exception);
      return offset;
}


int
dissect_rpc_string(tvbuff_t *tvb, proto_tree *tree,
    int hfindex, int offset, char **string_buffer_ret)
{
        offset = dissect_rpc_opaque_data(tvb, offset, tree, NULL,
          hfindex, FALSE, 0, TRUE, string_buffer_ret, NULL);
      return offset;
}


int
dissect_rpc_data(tvbuff_t *tvb, proto_tree *tree,
    int hfindex, int offset)
{
        offset = dissect_rpc_opaque_data(tvb, offset, tree, NULL,
                               hfindex, FALSE, 0, FALSE, NULL, NULL);
      return offset;
}


int
dissect_rpc_bytes(tvbuff_t *tvb, proto_tree *tree,
    int hfindex, int offset, guint32 length,
    gboolean string_data, char **string_buffer_ret)
{
        offset = dissect_rpc_opaque_data(tvb, offset, tree, NULL,
          hfindex, TRUE, length, string_data, string_buffer_ret, NULL);
      return offset;
}


int
dissect_rpc_list(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
      int offset, dissect_function_t *rpc_list_dissector)
{
      guint32 value_follows;

      while (1) {
            value_follows = tvb_get_ntohl(tvb, offset+0);
            proto_tree_add_boolean(tree,hf_rpc_value_follows, tvb,
                  offset+0, 4, value_follows);
            offset += 4;
            if (value_follows == 1) {
                  offset = rpc_list_dissector(tvb, offset, pinfo, tree);
            }
            else {
                  break;
            }
      }

      return offset;
}

int
dissect_rpc_array(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
      int offset, dissect_function_t *rpc_array_dissector,
      int hfindex)
{
      proto_item* lock_item;
      proto_tree* lock_tree;
      guint32     num;

      num = tvb_get_ntohl(tvb, offset);

      if( num == 0 ){
            proto_tree_add_none_format(tree, hfindex, tvb, offset, 4,
                  "no values");
            offset += 4;

            return offset;
      }

      lock_item = proto_tree_add_item(tree, hfindex, tvb, offset, -1, FALSE);

      lock_tree = proto_item_add_subtree(lock_item, ett_rpc_array);

      offset = dissect_rpc_uint32(tvb, lock_tree,
                  hf_rpc_array_len, offset);

      while (num--) {
            offset = rpc_array_dissector(tvb, offset, pinfo, lock_tree);
      }

      proto_item_set_end(lock_item, tvb, offset);
      return offset;
}

static int
dissect_rpc_authunix_cred(tvbuff_t* tvb, proto_tree* tree, int offset)
{
      guint stamp;
      guint uid;
      guint gid;
      guint gids_count;
      guint gids_i;
      guint gids_entry;
      proto_item *gitem;
      proto_tree *gtree = NULL;

      stamp = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_auth_stamp, tvb,
                  offset+0, 4, stamp);
      offset += 4;

      offset = dissect_rpc_string(tvb, tree,
                  hf_rpc_auth_machinename, offset, NULL);

      uid = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_auth_uid, tvb,
                  offset+0, 4, uid);
      offset += 4;

      gid = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_auth_gid, tvb,
                  offset+0, 4, gid);
      offset += 4;

      gids_count = tvb_get_ntohl(tvb,offset+0);
      if (tree) {
            gitem = proto_tree_add_text(tree, tvb,
                  offset, 4+gids_count*4, "Auxiliary GIDs");
            gtree = proto_item_add_subtree(gitem, ett_rpc_gids);
      }
      offset += 4;

      for (gids_i = 0 ; gids_i < gids_count ; gids_i++) {
            gids_entry = tvb_get_ntohl(tvb,offset+0);
            if (gtree)
            proto_tree_add_uint(gtree, hf_rpc_auth_gid, tvb,
                  offset, 4, gids_entry);
            offset+=4;
      }
      /* how can I NOW change the gitem to print a list with
            the first 16 gids? */

      return offset;
}

static int
dissect_rpc_authgss_cred(tvbuff_t* tvb, proto_tree* tree, int offset)
{
      guint agc_v;
      guint agc_proc;
      guint agc_seq;
      guint agc_svc;

      agc_v = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_v,
                            tvb, offset+0, 4, agc_v);
      offset += 4;

      agc_proc = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_proc,
                            tvb, offset+0, 4, agc_proc);
      offset += 4;

      agc_seq = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_seq,
                            tvb, offset+0, 4, agc_seq);
      offset += 4;

      agc_svc = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_svc,
                            tvb, offset+0, 4, agc_svc);
      offset += 4;

      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgss_ctx,
                  offset);

      return offset;
}

static int
dissect_rpc_authdes_desblock(tvbuff_t *tvb, proto_tree *tree,
int hfindex, int offset)
{
      guint32 value_low;
      guint32 value_high;

      value_high = tvb_get_ntohl(tvb, offset + 0);
      value_low  = tvb_get_ntohl(tvb, offset + 4);

      if (tree) {
            proto_tree_add_text(tree, tvb, offset, 8,
                  "%s: 0x%x%08x", proto_registrar_get_name(hfindex), value_high,
                  value_low);
      }

      return offset + 8;
}

static int
dissect_rpc_authdes_cred(tvbuff_t* tvb, proto_tree* tree, int offset)
{
      guint adc_namekind;
      guint window = 0;
      guint nickname = 0;

      adc_namekind = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authdes_namekind,
                            tvb, offset+0, 4, adc_namekind);
      offset += 4;

      switch(adc_namekind)
      {
      case AUTHDES_NAMEKIND_FULLNAME:
            offset = dissect_rpc_string(tvb, tree,
                  hf_rpc_authdes_netname, offset, NULL);
            offset = dissect_rpc_authdes_desblock(tvb, tree,
                  hf_rpc_authdes_convkey, offset);
            window = tvb_get_ntohl(tvb, offset+0);
            proto_tree_add_uint(tree, hf_rpc_authdes_window, tvb, offset+0, 4,
                  window);
            offset += 4;
            break;

      case AUTHDES_NAMEKIND_NICKNAME:
            nickname = tvb_get_ntohl(tvb, offset+0);
            proto_tree_add_uint(tree, hf_rpc_authdes_nickname, tvb, offset+0, 4,
                  nickname);
            offset += 4;
            break;
      }

      return offset;
}

static int
dissect_rpc_authgssapi_cred(tvbuff_t* tvb, proto_tree* tree, int offset)
{
      guint agc_v;
      guint agc_msg;

      agc_v = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgssapi_v,
                            tvb, offset+0, 4, agc_v);
      offset += 4;

      agc_msg = tvb_get_ntohl(tvb, offset+0);
      if (tree)
            proto_tree_add_boolean(tree, hf_rpc_authgssapi_msg,
                            tvb, offset+0, 4, agc_msg);
      offset += 4;

      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgssapi_handle,
                  offset);

      return offset;
}

static int
dissect_rpc_cred(tvbuff_t* tvb, proto_tree* tree, int offset)
{
      guint flavor;
      guint length;

      proto_item *citem;
      proto_tree *ctree;

      flavor = tvb_get_ntohl(tvb,offset+0);
      length = tvb_get_ntohl(tvb,offset+4);
      length = rpc_roundup(length);

      if (tree) {
            citem = proto_tree_add_text(tree, tvb, offset,
                                  8+length, "Credentials");
            ctree = proto_item_add_subtree(citem, ett_rpc_cred);
            proto_tree_add_uint(ctree, hf_rpc_auth_flavor, tvb,
                            offset+0, 4, flavor);
            proto_tree_add_uint(ctree, hf_rpc_auth_length, tvb,
                            offset+4, 4, length);

            switch (flavor) {
            case AUTH_UNIX:
                  dissect_rpc_authunix_cred(tvb, ctree, offset+8);
                  break;
            /*
            case AUTH_SHORT:

            break;
            */
            case AUTH_DES:
                  dissect_rpc_authdes_cred(tvb, ctree, offset+8);
                  break;

            case RPCSEC_GSS:
                  dissect_rpc_authgss_cred(tvb, ctree, offset+8);
                  break;

            case AUTH_GSSAPI:
                  dissect_rpc_authgssapi_cred(tvb, ctree, offset+8);
                  break;

            default:
                  if (length)
                        proto_tree_add_text(ctree, tvb, offset+8,
                                        length,"opaque data");
            break;
            }
      }
      offset += 8 + length;

      return offset;
}

/*
 * XDR opaque object, the contents of which are interpreted as a GSS-API
 * token.
 */
static int
dissect_rpc_authgss_token(tvbuff_t* tvb, proto_tree* tree, int offset,
    packet_info *pinfo)
{
      guint32 opaque_length, rounded_length;
      gint len_consumed, length, reported_length;
      tvbuff_t *new_tvb;

      proto_item *gitem;
      proto_tree *gtree = NULL;

      opaque_length = tvb_get_ntohl(tvb, offset+0);
      rounded_length = rpc_roundup(opaque_length);
      if (tree) {
            gitem = proto_tree_add_text(tree, tvb, offset,
                                  4+rounded_length, "GSS Token");
            gtree = proto_item_add_subtree(gitem, ett_rpc_gss_token);
            proto_tree_add_uint(gtree, hf_rpc_authgss_token_length,
                            tvb, offset+0, 4, opaque_length);
      }
      offset += 4;
      if (opaque_length != 0) {
            length = tvb_length_remaining(tvb, offset);
            reported_length = tvb_reported_length_remaining(tvb, offset);
            DISSECTOR_ASSERT(length >= 0);
            DISSECTOR_ASSERT(reported_length >= 0);
            if (length > reported_length)
                  length = reported_length;
            if ((guint32)length > opaque_length)
                  length = opaque_length;
            if ((guint32)reported_length > opaque_length)
                  reported_length = opaque_length;
            new_tvb = tvb_new_subset(tvb, offset, length, reported_length);
            len_consumed = call_dissector(gssapi_handle, new_tvb, pinfo, gtree);
            offset += len_consumed;
      }
      offset = rpc_roundup(offset);
      return offset;
}

/* AUTH_DES verifiers are asymmetrical, so we need to know what type of
 * verifier we're decoding (CALL or REPLY).
 */
static int
dissect_rpc_verf(tvbuff_t* tvb, proto_tree* tree, int offset, int msg_type,
                 packet_info *pinfo)
{
      guint flavor;
      guint length;

      proto_item *vitem;
      proto_tree *vtree;

      flavor = tvb_get_ntohl(tvb,offset+0);
      length = tvb_get_ntohl(tvb,offset+4);
      length = rpc_roundup(length);

      if (tree) {
            vitem = proto_tree_add_text(tree, tvb, offset,
                                  8+length, "Verifier");
            vtree = proto_item_add_subtree(vitem, ett_rpc_verf);
            proto_tree_add_uint(vtree, hf_rpc_auth_flavor, tvb,
                            offset+0, 4, flavor);

            switch (flavor) {
            case AUTH_UNIX:
                  proto_tree_add_uint(vtree, hf_rpc_auth_length, tvb,
                                  offset+4, 4, length);
                  dissect_rpc_authunix_cred(tvb, vtree, offset+8);
                  break;
            case AUTH_DES:
                  proto_tree_add_uint(vtree, hf_rpc_auth_length, tvb,
                        offset+4, 4, length);

                  if (msg_type == RPC_CALL)
                  {
                        guint window;

                        dissect_rpc_authdes_desblock(tvb, vtree,
                              hf_rpc_authdes_timestamp, offset+8);
                        window = tvb_get_ntohl(tvb, offset+16);
                        proto_tree_add_uint(vtree, hf_rpc_authdes_windowverf, tvb,
                              offset+16, 4, window);
                  }
                  else
                  {
                        /* must be an RPC_REPLY */
                        guint nickname;

                        dissect_rpc_authdes_desblock(tvb, vtree,
                              hf_rpc_authdes_timeverf, offset+8);
                        nickname = tvb_get_ntohl(tvb, offset+16);
                        proto_tree_add_uint(vtree, hf_rpc_authdes_nickname, tvb,
                              offset+16, 4, nickname);
                  }
                  break;
            case RPCSEC_GSS:
                  dissect_rpc_authgss_token(tvb, vtree, offset+4, pinfo);
                  break;
            default:
                  proto_tree_add_uint(vtree, hf_rpc_auth_length, tvb,
                                  offset+4, 4, length);
                  if (length)
                        proto_tree_add_text(vtree, tvb, offset+8,
                                        length, "opaque data");
                  break;
            }
      }
      offset += 8 + length;

      return offset;
}

static int
dissect_rpc_authgss_initarg(tvbuff_t* tvb, proto_tree* tree, int offset,
    packet_info *pinfo)
{
      return dissect_rpc_authgss_token(tvb, tree, offset, pinfo);
}

static int
dissect_rpc_authgss_initres(tvbuff_t* tvb, proto_tree* tree, int offset,
    packet_info *pinfo)
{
      int major, minor, window;

      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgss_ctx,
                  offset);

      major = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_major, tvb,
                            offset+0, 4, major);
      offset += 4;

      minor = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_minor, tvb,
                            offset+0, 4, minor);
      offset += 4;

      window = tvb_get_ntohl(tvb,offset+0);
      if (tree)
            proto_tree_add_uint(tree, hf_rpc_authgss_window, tvb,
                            offset+0, 4, window);
      offset += 4;

      offset = dissect_rpc_authgss_token(tvb, tree, offset, pinfo);

      return offset;
}

static int
dissect_rpc_authgssapi_initarg(tvbuff_t* tvb, proto_tree* tree, int offset,
    packet_info *pinfo)
{
      guint version;
      proto_item *mitem;
      proto_tree *mtree = NULL;

      if (tree) {
          mitem = proto_tree_add_text(tree, tvb, offset, -1,
            "AUTH_GSSAPI Msg");
          mtree = proto_item_add_subtree(mitem, ett_rpc_authgssapi_msg);
      }
      version = tvb_get_ntohl(tvb, offset+0);
      if (mtree) {
            proto_tree_add_uint(mtree, hf_rpc_authgssapi_msgv, tvb,
                offset+0, 4, version);
      }
      offset += 4;

      offset = dissect_rpc_authgss_token(tvb, mtree, offset, pinfo);

      return offset;
}

static int
dissect_rpc_authgssapi_initres(tvbuff_t* tvb, proto_tree* tree, int offset,
    packet_info *pinfo)
{
      guint version;
      guint major, minor;
      proto_item *mitem;
      proto_tree *mtree = NULL;

      if (tree) {
          mitem = proto_tree_add_text(tree, tvb, offset, -1,
            "AUTH_GSSAPI Msg");
          mtree = proto_item_add_subtree(mitem, ett_rpc_authgssapi_msg);
      }

      version = tvb_get_ntohl(tvb,offset+0);
      if (mtree) {
            proto_tree_add_uint(mtree, hf_rpc_authgssapi_msgv, tvb,
                            offset+0, 4, version);
      }
      offset += 4;

      offset = dissect_rpc_data(tvb, mtree, hf_rpc_authgssapi_handle,
                  offset);

      major = tvb_get_ntohl(tvb,offset+0);
      if (mtree) {
            proto_tree_add_uint(mtree, hf_rpc_authgss_major, tvb,
                            offset+0, 4, major);
      }
      offset += 4;

      minor = tvb_get_ntohl(tvb,offset+0);
      if (mtree) {
            proto_tree_add_uint(mtree, hf_rpc_authgss_minor, tvb,
                            offset+0, 4, minor);
      }
      offset += 4;

      offset = dissect_rpc_authgss_token(tvb, mtree, offset, pinfo);

      offset = dissect_rpc_data(tvb, mtree, hf_rpc_authgssapi_isn, offset);

      return offset;
}

static int
dissect_auth_gssapi_data(tvbuff_t *tvb, proto_tree *tree, int offset)
{
      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgss_data,
                  offset);
      return offset;
}

static int
call_dissect_function(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
      int offset, dissect_function_t* dissect_function, const char *progname)
{
      const char *saved_proto;

      if (dissect_function != NULL) {
            /* set the current protocol name */
            saved_proto = pinfo->current_proto;
            if (progname != NULL)
                  pinfo->current_proto = progname;

            /* call the dissector for the next level */
            offset = dissect_function(tvb, offset, pinfo, tree);

            /* restore the protocol name */
            pinfo->current_proto = saved_proto;
      }

      return offset;
}


static int
dissect_rpc_authgss_integ_data(tvbuff_t *tvb, packet_info *pinfo,
      proto_tree *tree, int offset,
      dissect_function_t* dissect_function,
      const char *progname)
{
      guint32 length, rounded_length, seq;

      proto_item *gitem;
      proto_tree *gtree = NULL;

      length = tvb_get_ntohl(tvb, offset+0);
      rounded_length = rpc_roundup(length);
      seq = tvb_get_ntohl(tvb, offset+4);

      if (tree) {
            gitem = proto_tree_add_text(tree, tvb, offset,
                                  4+rounded_length, "GSS Data");
            gtree = proto_item_add_subtree(gitem, ett_rpc_gss_data);
            proto_tree_add_uint(gtree, hf_rpc_authgss_data_length,
                            tvb, offset+0, 4, length);
            proto_tree_add_uint(gtree, hf_rpc_authgss_seq,
                            tvb, offset+4, 4, seq);
      }
      offset += 8;

      if (dissect_function != NULL) {
            /* offset = */
            call_dissect_function(tvb, pinfo, gtree, offset,
                              dissect_function, progname);
      }
      offset += rounded_length - 4;
      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgss_checksum,
                  offset);
      return offset;
}


static int
dissect_rpc_authgss_priv_data(tvbuff_t *tvb, proto_tree *tree, int offset)
{
      offset = dissect_rpc_data(tvb, tree, hf_rpc_authgss_data,
                  offset);
      return offset;
}

/*
 * Dissect the arguments to an indirect call; used by the portmapper/RPCBIND
 * dissector for the CALLIT procedure.
 *
 * Record these in the same table as the direct calls
 * so we can find it when dissecting an indirect call reply.
 * (There should not be collissions between xid between direct and 
 *  indirect calls.)
 */
int
dissect_rpc_indir_call(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
    int offset, int args_id, guint32 prog, guint32 vers, guint32 proc)
{
      conversation_t* conversation;
      static address null_address = { AT_NONE, 0, NULL };
      rpc_proc_info_key key;
      rpc_proc_info_value *value;
      rpc_call_info_value *rpc_call;
      dissect_function_t *dissect_function = NULL;
      rpc_conv_info_t *rpc_conv_info=NULL;
      guint32 xid;

      key.prog = prog;
      key.vers = vers;
      key.proc = proc;
      if ((value = g_hash_table_lookup(rpc_procs,&key)) != NULL) {
            dissect_function = value->dissect_call;

            /* Keep track of the address whence the call came, and the
               port to which the call is being sent, so that we can
               match up calls with replies.

               If the transport is connection-oriented (we check, for
               now, only for "pinfo->ptype" of PT_TCP), we also take
               into account the port from which the call was sent
               and the address to which the call was sent, because
               the addresses and ports of the two endpoints should be
               the same for all calls and replies.  (XXX - what if
               the connection is broken and re-established?)

               If the transport is connectionless, we don't worry
               about the address to which the call was sent and from
               which the reply was sent, because there's no
               guarantee that the reply will come from the address
               to which the call was sent.  We also don't worry about
               the port *from* which the call was sent and *to* which
               the reply was sent, because some clients (*cough* OS X
               NFS client *cough) might send retransmissions from a
               different port from the original request. */
            if (pinfo->ptype == PT_TCP) {
                  conversation = find_conversation(pinfo->fd->num, &pinfo->src,
                      &pinfo->dst, pinfo->ptype, pinfo->srcport,
                      pinfo->destport, 0);
            } else {
                  /*
                   * XXX - you currently still have to pass a non-null
                   * pointer for the second address argument even
                   * if you use NO_ADDR_B.
                   */
                  conversation = find_conversation(pinfo->fd->num, &pinfo->src,
                      &null_address, pinfo->ptype, pinfo->destport,
                      0, NO_ADDR_B|NO_PORT_B);
            }
            if (conversation == NULL) {
                  /* It's not part of any conversation - create a new
                     one.

                     XXX - this should never happen, as we should've
                     created a conversation for it in the RPC
                     dissector. */
                  if (pinfo->ptype == PT_TCP) {
                        conversation = conversation_new(pinfo->fd->num, &pinfo->src,
                            &pinfo->dst, pinfo->ptype, pinfo->srcport,
                            pinfo->destport, 0);
                  } else {
                        conversation = conversation_new(pinfo->fd->num, &pinfo->src,
                            &null_address, pinfo->ptype, pinfo->destport,
                            0, NO_ADDR2|NO_PORT2);
                  }
            }
            /*
             * Do we already have a state structure for this conv
             */
            rpc_conv_info = conversation_get_proto_data(conversation, proto_rpc);
            if (!rpc_conv_info) {
                  /* No.  Attach that information to the conversation, and add
                   * it to the list of information structures.
                   */
                  rpc_conv_info = se_alloc(sizeof(rpc_conv_info_t));
                  rpc_conv_info->xids=se_tree_create_non_persistent(EMEM_TREE_TYPE_RED_BLACK, "rpc_xids");

                  conversation_add_proto_data(conversation, proto_rpc, rpc_conv_info);
            }

            /* Make the dissector for this conversation the non-heuristic
               RPC dissector. */
            conversation_set_dissector(conversation,
                (pinfo->ptype == PT_TCP) ? rpc_tcp_handle : rpc_handle);

            /* Dissectors for RPC procedure calls and replies shouldn't
               create new tvbuffs, and we don't create one ourselves,
               so we should have been handed the tvbuff for this RPC call;
               as such, the XID is at offset 0 in this tvbuff. */
            /* look up the request */
            xid = tvb_get_ntohl(tvb, offset + 0);
            rpc_call = se_tree_lookup32(rpc_conv_info->xids, xid);
            if (rpc_call == NULL) {
                  /* We didn't find it; create a new entry.
                     Prepare the value data.
                     Not all of it is needed for handling indirect
                     calls, so we set a bunch of items to 0. */
                  rpc_call = se_alloc(sizeof(rpc_call_info_value));
                  rpc_call->req_num = 0;
                  rpc_call->rep_num = 0;
                  rpc_call->prog = prog;
                  rpc_call->vers = vers;
                  rpc_call->proc = proc;
                  rpc_call->private_data = NULL;

                  /*
                   * XXX - what about RPCSEC_GSS?
                   * Do we have to worry about it?
                   */
                  rpc_call->flavor = FLAVOR_NOT_GSSAPI;
                  rpc_call->gss_proc = 0;
                  rpc_call->gss_svc = 0;
                  rpc_call->proc_info = value;
                  /* store it */
                  se_tree_insert32(rpc_conv_info->xids, xid, (void *)rpc_call);
            }
      }
      else {
            /* We don't know the procedure.
               Happens only with strange program versions or
               non-existing dissectors.
               Just show the arguments as opaque data. */
            offset = dissect_rpc_data(tvb, tree, args_id,
                offset);
            return offset;
      }

      if ( tree )
      {
            proto_tree_add_text(tree, tvb, offset, 4,
                  "Argument length: %u",
                  tvb_get_ntohl(tvb, offset));
      }
      offset += 4;

      /* Dissect the arguments */
      offset = call_dissect_function(tvb, pinfo, tree, offset,
                  dissect_function, NULL);
      return offset;
}

/*
 * Dissect the results in an indirect reply; used by the portmapper/RPCBIND
 * dissector.
 */
int
dissect_rpc_indir_reply(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
    int offset, int result_id, int prog_id, int vers_id, int proc_id)
{
      conversation_t* conversation;
      static address null_address = { AT_NONE, 0, NULL };
      rpc_call_info_value *rpc_call;
      char *procname=NULL;
      dissect_function_t *dissect_function = NULL;
      rpc_conv_info_t *rpc_conv_info=NULL;
      guint32 xid;

      /* Look for the matching call in the xid table.
         A reply must match a call that we've seen, and the
         reply must be sent to the same address that the call came
         from, and must come from the port to which the call was sent.

         If the transport is connection-oriented (we check, for
         now, only for "pinfo->ptype" of PT_TCP), we take
         into account the port from which the call was sent
         and the address to which the call was sent, because
         the addresses and ports of the two endpoints should be
         the same for all calls and replies.

         If the transport is connectionless, we don't worry
         about the address to which the call was sent and from
         which the reply was sent, because there's no
         guarantee that the reply will come from the address
         to which the call was sent.  We also don't worry about
         the port *from* which the call was sent and *to* which
         the reply was sent, because some clients (*cough* OS X
         NFS client *cough) might send retransmissions from a
         different port from the original request. */
      if (pinfo->ptype == PT_TCP) {
            conversation = find_conversation(pinfo->fd->num, &pinfo->src, &pinfo->dst,
                pinfo->ptype, pinfo->srcport, pinfo->destport, 0);
      } else {
            /*
             * XXX - you currently still have to pass a non-null
             * pointer for the second address argument even
             * if you use NO_ADDR_B.
             */
            conversation = find_conversation(pinfo->fd->num, &pinfo->dst, &null_address,
                pinfo->ptype, pinfo->srcport, 0, NO_ADDR_B|NO_PORT_B);
      }
      if (conversation == NULL) {
            /* We haven't seen an RPC call for that conversation,
               so we can't check for a reply to that call.
               Just show the reply stuff as opaque data. */
            offset = dissect_rpc_data(tvb, tree, result_id,
                offset);
            return offset;
      }
      /*
       * Do we already have a state structure for this conv
       */
      rpc_conv_info = conversation_get_proto_data(conversation, proto_rpc);
      if (!rpc_conv_info) {
            /* No.  Attach that information to the conversation, and add
             * it to the list of information structures.
             */
            rpc_conv_info = se_alloc(sizeof(rpc_conv_info_t));
            rpc_conv_info->xids=se_tree_create_non_persistent(EMEM_TREE_TYPE_RED_BLACK, "rpc_xids");
            conversation_add_proto_data(conversation, proto_rpc, rpc_conv_info);
      }

      /* The XIDs of the call and reply must match. */
      xid = tvb_get_ntohl(tvb, 0);
      rpc_call = se_tree_lookup32(rpc_conv_info->xids, xid);
      if (rpc_call == NULL) {
            /* The XID doesn't match a call from that
               conversation, so it's probably not an RPC reply.
               Just show the reply stuff as opaque data. */
            offset = dissect_rpc_data(tvb, tree, result_id,
                offset);
            return offset;
      }

      if (rpc_call->proc_info != NULL) {
            dissect_function = rpc_call->proc_info->dissect_reply;
            if (rpc_call->proc_info->name != NULL) {
                  procname = (char *)rpc_call->proc_info->name;
            }
            else {
                  procname=ep_alloc(20);
                  g_snprintf(procname, 20, "proc-%u", rpc_call->proc);
            }
      }
      else {
#if 0
            dissect_function = NULL;
#endif
            procname=ep_alloc(20);
            g_snprintf(procname, 20, "proc-%u", rpc_call->proc);
      }

      if ( tree )
      {
            proto_item *tmp_item;

            /* Put the program, version, and procedure into the tree. */
            tmp_item=proto_tree_add_uint_format(tree, prog_id, tvb,
                  0, 0, rpc_call->prog, "Program: %s (%u)",
                  rpc_prog_name(rpc_call->prog), rpc_call->prog);
            PROTO_ITEM_SET_GENERATED(tmp_item);

            tmp_item=proto_tree_add_uint(tree, vers_id, tvb, 0, 0, rpc_call->vers);
            PROTO_ITEM_SET_GENERATED(tmp_item);

            tmp_item=proto_tree_add_uint_format(tree, proc_id, tvb,
                  0, 0, rpc_call->proc, "Procedure: %s (%u)",
                  procname, rpc_call->proc);
            PROTO_ITEM_SET_GENERATED(tmp_item);
      }

      if (dissect_function == NULL) {
            /* We don't know how to dissect the reply procedure.
               Just show the reply stuff as opaque data. */
            offset = dissect_rpc_data(tvb, tree, result_id,
                offset);
            return offset;
      }

      if (tree) {
            /* Put the length of the reply value into the tree. */
            proto_tree_add_text(tree, tvb, offset, 4,
                  "Argument length: %u",
                  tvb_get_ntohl(tvb, offset));
      }
      offset += 4;

      /* Dissect the return value */
      offset = call_dissect_function(tvb, pinfo, tree, offset,
                  dissect_function, NULL);
      return offset;
}

/*
 * Just mark this as a continuation of an earlier packet.
 */
static void
dissect_rpc_continuation(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
      proto_item *rpc_item;
      proto_tree *rpc_tree;

      if (check_col(pinfo->cinfo, COL_PROTOCOL))
            col_set_str(pinfo->cinfo, COL_PROTOCOL, "RPC");
      if (check_col(pinfo->cinfo, COL_INFO))
            col_set_str(pinfo->cinfo, COL_INFO, "Continuation");

      if (tree) {
            rpc_item = proto_tree_add_item(tree, proto_rpc, tvb, 0, -1,
                        FALSE);
            rpc_tree = proto_item_add_subtree(rpc_item, ett_rpc);
            proto_tree_add_text(rpc_tree, tvb, 0, -1, "Continuation data");
      }
}


/**
 *  Produce a dummy RPC program entry for the given RPC program key
 *  and version values.
 */

static void  make_fake_rpc_prog_if_needed (rpc_prog_info_key *prpc_prog_key,
                                                                                     guint prog_ver)
{

rpc_prog_info_value *rpc_prog = NULL;


      /* sanity check: no one uses versions > 10 */
      if(prog_ver>10){
            return;
      }

      if( (rpc_prog = g_hash_table_lookup(rpc_progs, prpc_prog_key)) == NULL) {
            /* ok this is not a known rpc program so we
             * will have to fake it.
             */
            int proto_rpc_unknown_program;
            char *NAME, *Name, *name;
            static const vsff unknown_proc[] = {
                  { 0,"NULL",NULL,NULL },
                  { 0,NULL,NULL,NULL }
            };

            NAME=g_malloc(36);
            Name=g_malloc(32);
            name=g_malloc(32);
            g_snprintf(NAME, 36, "Unknown RPC Program:%d",prpc_prog_key->prog);
            g_snprintf(Name, 32, "RPC:%d",prpc_prog_key->prog);
            g_snprintf(name, 32, "rpc%d",prpc_prog_key->prog);
            proto_rpc_unknown_program = proto_register_protocol(NAME, Name, name);

            rpc_init_prog(proto_rpc_unknown_program, prpc_prog_key->prog, ett_rpc_unknown_program);
            rpc_init_proc_table(prpc_prog_key->prog, prog_ver, unknown_proc, hf_rpc_procedure);

      }
}


static gboolean
dissect_rpc_message(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
    tvbuff_t *frag_tvb, fragment_data *ipfd_head, gboolean is_tcp,
    guint32 rpc_rm, gboolean first_pdu)
{
      guint32     msg_type;
      rpc_call_info_value *rpc_call = NULL;
      rpc_prog_info_value *rpc_prog = NULL;
      rpc_prog_info_key rpc_prog_key;

      unsigned int xid;
      unsigned int rpcvers;
      unsigned int prog = 0;
      unsigned int vers = 0;
      unsigned int proc = 0;
      flavor_t flavor = FLAVOR_UNKNOWN;
      unsigned int gss_proc = 0;
      unsigned int gss_svc = 0;
      protocol_t *proto = NULL;
      int   proto_id = 0;
      int   ett = 0;
      int   procedure_hf;

      unsigned int reply_state;
      unsigned int accept_state;
      unsigned int reject_state;

      const char *msg_type_name = NULL;
      const char *progname = NULL;
      char *procname = NULL;

      unsigned int vers_low;
      unsigned int vers_high;

      unsigned int auth_state;

      proto_item *rpc_item = NULL;
      proto_tree *rpc_tree = NULL;

      proto_item *pitem = NULL;
      proto_tree *ptree = NULL;
      int offset = (is_tcp && tvb == frag_tvb) ? 4 : 0;

      rpc_proc_info_key key;
      rpc_proc_info_value     *value = NULL;
      conversation_t* conversation;
      static address null_address = { AT_NONE, 0, NULL };
      nstime_t ns;

      dissect_function_t *dissect_function = NULL;
      gboolean dissect_rpc = TRUE;

      rpc_conv_info_t *rpc_conv_info=NULL;


      /*
       * Check to see whether this looks like an RPC call or reply.
       */
      if (!tvb_bytes_exist(tvb, offset, 8)) {
            /* Captured data in packet isn't enough to let us tell. */
            return FALSE;
      }

      /* both directions need at least this */
      msg_type = tvb_get_ntohl(tvb, offset + 4);

      switch (msg_type) {

      case RPC_CALL:
            /* check for RPC call */
            if (!tvb_bytes_exist(tvb, offset, 16)) {
                  /* Captured data in packet isn't enough to let us
                     tell. */
                  return FALSE;
            }

            /* XID can be anything, so dont check it.
               We already have the message type.
               Check whether an RPC version number of 2 is in the
               location where it would be, and that an RPC program
               number we know about is in the location where it would be.

               XXX - Sun's snoop appears to recognize as RPC even calls
               to stuff it doesn't dissect; does it just look for a 2
               at that location, which seems far to weak a heuristic
               (too many false positives), or does it have some additional
               checks it does?

               We could conceivably check for any of the program numbers
               in the list at

                  ftp://ftp.tau.ac.il/pub/users/eilon/rpc/rpc

               and report it as RPC (but not dissect the payload if
               we don't have a subdissector) if it matches. */
            rpc_prog_key.prog = tvb_get_ntohl(tvb, offset + 12);

            /* we only dissect version 2 */
            if (tvb_get_ntohl(tvb, offset + 8) != 2 ){
                  return FALSE;
            }
            /* let the user be able to weaken the heuristics if he need
             * to look at proprietary protocols not known
             * to wireshark.
             */
            if(rpc_dissect_unknown_programs){
                  guint32 version;

                  /* if the user has specified that he wants to try to
                   * dissect even completely unknown RPC program numbers
                   * then let him do that.
                   * In this case we only check that the program number
                   * is neither 0 nor -1 which is better than nothing.
                   */
                  if(rpc_prog_key.prog==0 || rpc_prog_key.prog==0xffffffff){
                        return FALSE;
                  }
                  version=tvb_get_ntohl(tvb, offset+16);
                  make_fake_rpc_prog_if_needed (&rpc_prog_key, version);
            }
            if( (rpc_prog = g_hash_table_lookup(rpc_progs, &rpc_prog_key)) == NULL) {
                  /* They're not, so it's probably not an RPC call. */
                  return FALSE;
            }
            break;

      case RPC_REPLY:
            /* Check for RPC reply.  A reply must match a call that
               we've seen, and the reply must be sent to the same
               address that the call came from, and must come from
               the port to which the call was sent.

               If the transport is connection-oriented (we check, for
               now, only for "pinfo->ptype" of PT_TCP), we take
               into account the port from which the call was sent
               and the address to which the call was sent, because
               the addresses and ports of the two endpoints should be
               the same for all calls and replies.

               If the transport is connectionless, we don't worry
               about the address to which the call was sent and from
               which the reply was sent, because there's no
               guarantee that the reply will come from the address
               to which the call was sent.  We also don't worry about
               the port *from* which the call was sent and *to* which
               the reply was sent, because some clients (*cough* OS X
               NFS client *cough) might send retransmissions from a
               different port from the original request. */
            if (pinfo->ptype == PT_TCP) {
                  conversation = find_conversation(pinfo->fd->num, &pinfo->src,
                      &pinfo->dst, pinfo->ptype, pinfo->srcport,
                      pinfo->destport, 0);
            } else {
                  /*
                   * XXX - you currently still have to pass a non-null
                   * pointer for the second address argument even
                   * if you use NO_ADDR_B.
                   */
                  conversation = find_conversation(pinfo->fd->num, &pinfo->dst,
                      &null_address, pinfo->ptype, pinfo->srcport,
                      0, NO_ADDR_B|NO_PORT_B);
            }
            if (conversation == NULL) {
                  /* We haven't seen an RPC call for that conversation,
                     so we can't check for a reply to that call. */
                  return FALSE;
            }
            /*
             * Do we already have a state structure for this conv
             */
            rpc_conv_info = conversation_get_proto_data(conversation, proto_rpc);
            if (!rpc_conv_info) {
                  /* No.  Attach that information to the conversation, and add
                   * it to the list of information structures.
                   */
                  rpc_conv_info = se_alloc(sizeof(rpc_conv_info_t));
                  rpc_conv_info->xids=se_tree_create_non_persistent(EMEM_TREE_TYPE_RED_BLACK, "rpc_xids");

                  conversation_add_proto_data(conversation, proto_rpc, rpc_conv_info);
            }

            /* The XIDs of the call and reply must match. */
            xid = tvb_get_ntohl(tvb, offset + 0);
            rpc_call = se_tree_lookup32(rpc_conv_info->xids, xid);
            if (rpc_call == NULL) {
                  /* The XID doesn't match a call from that
                     conversation, so it's probably not an RPC reply. */

                  /* unless we're permitted to scan for embedded records
                   * and this is a connection-oriented transport, give up */
                  if ((! rpc_find_fragment_start) || (pinfo->ptype != PT_TCP)) {
                  return FALSE;
            }

                  /* in parse-partials, so define a dummy conversation for this reply */
                  rpc_call = se_alloc(sizeof(rpc_call_info_value));
                  rpc_call->req_num = 0;
                  rpc_call->rep_num = pinfo->fd->num;
                  rpc_call->prog = 0;
                  rpc_call->vers = 0;
                  rpc_call->proc = 0;
                  rpc_call->private_data = NULL;
                  rpc_call->xid = xid;
                  rpc_call->flavor = FLAVOR_NOT_GSSAPI;  /* total punt */
                  rpc_call->gss_proc = 0;
                  rpc_call->gss_svc = 0;
                  rpc_call->proc_info = value;
                  rpc_call->req_time = pinfo->fd->abs_ts;

                  /* store it */
                  se_tree_insert32(rpc_conv_info->xids, xid, (void *)rpc_call);

                  /* and fake up a matching program */
                  rpc_prog_key.prog = rpc_call->prog;
            }

            /* pass rpc_info to subdissectors */
            rpc_call->request=FALSE;
            pinfo->private_data=rpc_call;
            break;

      default:
            /* The putative message type field contains neither
               RPC_CALL nor RPC_REPLY, so it's not an RPC call or
               reply. */
            return FALSE;
      }

      if (is_tcp) {
            /*
             * This is RPC-over-TCP; check if this is the last
             * fragment.
             */
            if (!(rpc_rm & RPC_RM_LASTFRAG)) {
                  /*
                   * This isn't the last fragment.
                   * If we're doing reassembly, just return
                   * TRUE to indicate that this looks like
                   * the beginning of an RPC message,
                   * and let them do fragment reassembly.
                   */
                  if (rpc_defragment)
                        return TRUE;
            }
      }

      if (check_col(pinfo->cinfo, COL_PROTOCOL))
            col_set_str(pinfo->cinfo, COL_PROTOCOL, "RPC");

      if (tree) {
            rpc_item = proto_tree_add_item(tree, proto_rpc, tvb, 0, -1,
                FALSE);
            rpc_tree = proto_item_add_subtree(rpc_item, ett_rpc);

            if (is_tcp) {
                  show_rpc_fraginfo(tvb, frag_tvb, rpc_tree, rpc_rm,
                      ipfd_head, pinfo);
            }
      }

      xid      = tvb_get_ntohl(tvb, offset + 0);
      if (rpc_tree) {
            proto_tree_add_uint_format(rpc_tree,hf_rpc_xid, tvb,
                  offset+0, 4, xid, "XID: 0x%x (%u)", xid, xid);
      }

      msg_type_name = val_to_str(msg_type,rpc_msg_type,"%u");
      if (rpc_tree) {
            proto_tree_add_uint(rpc_tree, hf_rpc_msgtype, tvb,
                  offset+4, 4, msg_type);
            proto_item_append_text(rpc_item, ", Type:%s XID:0x%08x", msg_type_name, xid);
      }

      offset += 8;

      switch (msg_type) {

      case RPC_CALL:
            /* we know already the proto-entry, the ETT-const,
               and "rpc_prog" */
            proto = rpc_prog->proto;
            proto_id = rpc_prog->proto_id;
            ett = rpc_prog->ett;
            progname = rpc_prog->progname;

            rpcvers = tvb_get_ntohl(tvb, offset + 0);
            if (rpc_tree) {
                  proto_tree_add_uint(rpc_tree,
                        hf_rpc_version, tvb, offset+0, 4, rpcvers);
            }

            prog = tvb_get_ntohl(tvb, offset + 4);

            if (rpc_tree) {
                  proto_tree_add_uint_format(rpc_tree,
                        hf_rpc_program, tvb, offset+4, 4, prog,
                        "Program: %s (%u)", progname, prog);
            }

            if (check_col(pinfo->cinfo, COL_PROTOCOL)) {
                  /* Set the protocol name to the underlying
                     program name. */
                  col_set_str(pinfo->cinfo, COL_PROTOCOL, progname);
            }

            vers = tvb_get_ntohl(tvb, offset+8);
            if (rpc_tree) {
                  proto_tree_add_uint(rpc_tree,
                        hf_rpc_programversion, tvb, offset+8, 4, vers);
            }

            proc = tvb_get_ntohl(tvb, offset+12);

            key.prog = prog;
            key.vers = vers;
            key.proc = proc;

            if ((value = g_hash_table_lookup(rpc_procs,&key)) != NULL) {
                  dissect_function = value->dissect_call;
                  procname = (char *)value->name;
            }
            else {
                  /* happens only with strange program versions or
                     non-existing dissectors */
#if 0
                  dissect_function = NULL;
#endif
                  procname=ep_alloc(20);
                  g_snprintf(procname, 20, "proc-%u", proc);
            }

            /* Check for RPCSEC_GSS and AUTH_GSSAPI */
            if (tvb_bytes_exist(tvb, offset+16, 4)) {
                  switch (tvb_get_ntohl(tvb, offset+16)) {

                  case RPCSEC_GSS:
                        /*
                         * It's GSS-API authentication...
                         */
                        if (tvb_bytes_exist(tvb, offset+28, 8)) {
                              /*
                               * ...and we have the procedure
                               * and service information for it.
                               */
                              flavor = FLAVOR_GSSAPI;
                              gss_proc = tvb_get_ntohl(tvb, offset+28);
                              gss_svc = tvb_get_ntohl(tvb, offset+36);
                        } else {
                              /*
                               * ...but the procedure and service
                               * information isn't available.
                               */
                              flavor = FLAVOR_GSSAPI_NO_INFO;
                        }
                        break;

                  case AUTH_GSSAPI:
                        /*
                         * AUTH_GSSAPI flavor.  If auth_msg is TRUE,
                         * then this is an AUTH_GSSAPI message and
                         * not an application level message.
                         */
                        if (tvb_bytes_exist(tvb, offset+28, 4)) {
                              if (tvb_get_ntohl(tvb, offset+28)) {
                                    flavor = FLAVOR_AUTHGSSAPI_MSG;
                                    gss_proc = proc;
                                    procname = (char *)
                                        match_strval(gss_proc,
                                        rpc_authgssapi_proc);
                              } else {
                                    flavor = FLAVOR_AUTHGSSAPI;
                              }
                        }
                        break;

                  default:
                        /*
                         * It's not GSS-API authentication.
                         */
                        flavor = FLAVOR_NOT_GSSAPI;
                        break;
                  }
            }

            if (rpc_tree) {
                  proto_tree_add_uint_format(rpc_tree,
                        hf_rpc_procedure, tvb, offset+12, 4, proc,
                        "Procedure: %s (%u)", procname, proc);
            }

            if (check_col(pinfo->cinfo, COL_INFO)) {
                  if (first_pdu)
                        col_clear(pinfo->cinfo, COL_INFO);
                  else
                        col_append_fstr(pinfo->cinfo, COL_INFO, "  ; ");
                  col_append_fstr(pinfo->cinfo, COL_INFO,"V%u %s %s",
                        vers,
                        procname,
                        msg_type_name);
            }

            /* Keep track of the address whence the call came, and the
               port to which the call is being sent, so that we can
               match up calls with replies.

               If the transport is connection-oriented (we check, for
               now, only for "pinfo->ptype" of PT_TCP), we also take
               into account the port from which the call was sent
               and the address to which the call was sent, because
               the addresses and ports of the two endpoints should be
               the same for all calls and replies.  (XXX - what if
               the connection is broken and re-established?)

               If the transport is connectionless, we don't worry
               about the address to which the call was sent and from
               which the reply was sent, because there's no
               guarantee that the reply will come from the address
               to which the call was sent.  We also don't worry about
               the port *from* which the call was sent and *to* which
               the reply was sent, because some clients (*cough* OS X
               NFS client *cough) might send retransmissions from a
               different port from the original request. */
            if (pinfo->ptype == PT_TCP) {
                  conversation = find_conversation(pinfo->fd->num, &pinfo->src,
                      &pinfo->dst, pinfo->ptype, pinfo->srcport,
                      pinfo->destport, 0);
            } else {
                  /*
                   * XXX - you currently still have to pass a non-null
                   * pointer for the second address argument even
                   * if you use NO_ADDR_B.
                   */
                  conversation = find_conversation(pinfo->fd->num, &pinfo->src,
                      &null_address, pinfo->ptype, pinfo->destport,
                      0, NO_ADDR_B|NO_PORT_B);
            }
            if (conversation == NULL) {
                  /* It's not part of any conversation - create a new
                     one. */
                  if (pinfo->ptype == PT_TCP) {
                        conversation = conversation_new(pinfo->fd->num, &pinfo->src,
                            &pinfo->dst, pinfo->ptype, pinfo->srcport,
                            pinfo->destport, 0);
                  } else {
                        conversation = conversation_new(pinfo->fd->num, &pinfo->src,
                            &null_address, pinfo->ptype, pinfo->destport,
                            0, NO_ADDR2|NO_PORT2);
                  }
            }
            /*
             * Do we already have a state structure for this conv
             */
            rpc_conv_info = conversation_get_proto_data(conversation, proto_rpc);
            if (!rpc_conv_info) {
                  /* No.  Attach that information to the conversation, and add
                   * it to the list of information structures.
                   */
                  rpc_conv_info = se_alloc(sizeof(rpc_conv_info_t));
                  rpc_conv_info->xids=se_tree_create_non_persistent(EMEM_TREE_TYPE_RED_BLACK, "rpc_xids");

                  conversation_add_proto_data(conversation, proto_rpc, rpc_conv_info);
            }


            /* Make the dissector for this conversation the non-heuristic
               RPC dissector. */
            conversation_set_dissector(conversation,
                  (pinfo->ptype == PT_TCP) ? rpc_tcp_handle : rpc_handle);

            /* look up the request */
            rpc_call = se_tree_lookup32(rpc_conv_info->xids, xid);
            if (rpc_call) {
                  /* We've seen a request with this XID, with the same
                     source and destination, before - but was it
                     *this* request? */
                  if (pinfo->fd->num != rpc_call->req_num) {
                        /* No, so it's a duplicate request.
                           Mark it as such. */
                        if (check_col(pinfo->cinfo, COL_INFO)) {
                              col_prepend_fstr(pinfo->cinfo, COL_INFO,
                                    "[RPC retransmission of #%d]", rpc_call->req_num);
                        }
                        proto_tree_add_item(rpc_tree,
                              hf_rpc_dup, tvb, 0,0, TRUE);
                        proto_tree_add_uint(rpc_tree,
                              hf_rpc_call_dup, tvb, 0,0, rpc_call->req_num);
                  }
                  if(rpc_call->rep_num){
                        if (check_col(pinfo->cinfo, COL_INFO)) {
                              col_append_fstr(pinfo->cinfo, COL_INFO," (Reply In %d)", rpc_call->rep_num);
                        }
                  }
            } else {
                  /* Prepare the value data.
                     "req_num" and "rep_num" are frame numbers;
                     frame numbers are 1-origin, so we use 0
                     to mean "we don't yet know in which frame
                     the reply for this call appears". */
                  rpc_call = se_alloc(sizeof(rpc_call_info_value));
                  rpc_call->req_num = pinfo->fd->num;
                  rpc_call->rep_num = 0;
                  rpc_call->prog = prog;
                  rpc_call->vers = vers;
                  rpc_call->proc = proc;
                  rpc_call->private_data = NULL;
                  rpc_call->xid = xid;
                  rpc_call->flavor = flavor;
                  rpc_call->gss_proc = gss_proc;
                  rpc_call->gss_svc = gss_svc;
                  rpc_call->proc_info = value;
                  rpc_call->req_time = pinfo->fd->abs_ts;

                  /* store it */
                  se_tree_insert32(rpc_conv_info->xids, xid, (void *)rpc_call);
            }

            if(rpc_call && rpc_call->rep_num){
                  proto_item *tmp_item;

                  tmp_item=proto_tree_add_uint_format(rpc_tree, hf_rpc_repframe,
                      tvb, 0, 0, rpc_call->rep_num,
                      "The reply to this request is in frame %u",
                      rpc_call->rep_num);
                  PROTO_ITEM_SET_GENERATED(tmp_item);
            }

            offset += 16;

            offset = dissect_rpc_cred(tvb, rpc_tree, offset);
            offset = dissect_rpc_verf(tvb, rpc_tree, offset, msg_type, pinfo);

            /* pass rpc_info to subdissectors */
            rpc_call->request=TRUE;
            pinfo->private_data=rpc_call;

            /* go to the next dissector */

            break;      /* end of RPC call */

      case RPC_REPLY:
            /* we know already the type from the calling routine,
               and we already have "rpc_call" set above. */
            prog = rpc_call->prog;
            vers = rpc_call->vers;
            proc = rpc_call->proc;
            flavor = rpc_call->flavor;
            gss_proc = rpc_call->gss_proc;
            gss_svc = rpc_call->gss_svc;

            if (rpc_call->proc_info != NULL) {
                  dissect_function = rpc_call->proc_info->dissect_reply;
                  if (rpc_call->proc_info->name != NULL) {
                        procname = (char *)rpc_call->proc_info->name;
                  }
                  else {
                        procname=ep_alloc(20);
                        g_snprintf(procname, 20, "proc-%u", proc);
                  }
            }
            else {
#if 0
                  dissect_function = NULL;
#endif
                  procname=ep_alloc(20);
                  g_snprintf(procname, 20, "proc-%u", proc);
            }

            /*
             * If this is an AUTH_GSSAPI message, then the RPC procedure
             * is not an application procedure, but rather an auth level
             * procedure, so it would be misleading to print the RPC
             * procname.  Replace the RPC procname with the corresponding
             * AUTH_GSSAPI procname.
             */
            if (flavor == FLAVOR_AUTHGSSAPI_MSG) {
                  procname = (char *)match_strval(gss_proc, rpc_authgssapi_proc);
            }

            rpc_prog_key.prog = prog;
            if ((rpc_prog = g_hash_table_lookup(rpc_progs,&rpc_prog_key)) == NULL) {
                  proto = NULL;
                  proto_id = 0;
                  ett = 0;
                  progname = "Unknown";
            }
            else {
                  proto = rpc_prog->proto;
                  proto_id = rpc_prog->proto_id;
                  ett = rpc_prog->ett;
                  progname = rpc_prog->progname;

                  if (check_col(pinfo->cinfo, COL_PROTOCOL)) {
                        /* Set the protocol name to the underlying
                           program name. */
                        col_set_str(pinfo->cinfo, COL_PROTOCOL, progname);
                  }
            }

            if (check_col(pinfo->cinfo, COL_INFO)) {
                  if (first_pdu)
                        col_clear(pinfo->cinfo, COL_INFO);
                  else
                        col_append_fstr(pinfo->cinfo, COL_INFO, "  ; ");
                  col_append_fstr(pinfo->cinfo, COL_INFO,"V%u %s %s",
                        vers,
                        procname,
                        msg_type_name);
            }

            if (rpc_tree) {
                  proto_item *tmp_item;
                  tmp_item=proto_tree_add_uint_format(rpc_tree,
                        hf_rpc_program, tvb, 0, 0, prog,
                        "Program: %s (%u)", progname, prog);
                  PROTO_ITEM_SET_GENERATED(tmp_item);
                  tmp_item=proto_tree_add_uint(rpc_tree,
                        hf_rpc_programversion, tvb, 0, 0, vers);
                  PROTO_ITEM_SET_GENERATED(tmp_item);
                  tmp_item=proto_tree_add_uint_format(rpc_tree,
                        hf_rpc_procedure, tvb, 0, 0, proc,
                        "Procedure: %s (%u)", procname, proc);
                  PROTO_ITEM_SET_GENERATED(tmp_item);
            }

            reply_state = tvb_get_ntohl(tvb,offset+0);
            if (rpc_tree) {
                  proto_tree_add_uint(rpc_tree, hf_rpc_state_reply, tvb,
                        offset+0, 4, reply_state);
            }
            offset += 4;

            /* Indicate the frame to which this is a reply. */
            if(rpc_call && rpc_call->req_num){
                  proto_item *tmp_item;

                  tmp_item=proto_tree_add_uint_format(rpc_tree, hf_rpc_reqframe,
                      tvb, 0, 0, rpc_call->req_num,
                      "This is a reply to a request in frame %u",
                      rpc_call->req_num);
                  PROTO_ITEM_SET_GENERATED(tmp_item);

                  nstime_delta(&ns, &pinfo->fd->abs_ts, &rpc_call->req_time);
                  tmp_item=proto_tree_add_time(rpc_tree, hf_rpc_time, tvb, offset, 0,
                        &ns);
                  PROTO_ITEM_SET_GENERATED(tmp_item);

                  if (check_col(pinfo->cinfo, COL_INFO)) {
                        col_append_fstr(pinfo->cinfo, COL_INFO," (Call In %d)", rpc_call->req_num);
                  }
            }


            if ((!rpc_call) || (rpc_call->rep_num == 0)) {
                  /* We have not yet seen a reply to that call, so
                     this must be the first reply; remember its
                     frame number. */
                  rpc_call->rep_num = pinfo->fd->num;
            } else {
                  /* We have seen a reply to this call - but was it
                     *this* reply? */
                  if (rpc_call->rep_num != pinfo->fd->num) {
                        proto_item *tmp_item;

                        /* No, so it's a duplicate reply.
                           Mark it as such. */
                        if (check_col(pinfo->cinfo, COL_INFO)) {
                              col_prepend_fstr(pinfo->cinfo, COL_INFO,
                                    "[RPC duplicate of #%d]", rpc_call->rep_num);
                        }
                        tmp_item=proto_tree_add_item(rpc_tree,
                              hf_rpc_dup, tvb, 0,0, TRUE);
                        PROTO_ITEM_SET_GENERATED(tmp_item);

                        tmp_item=proto_tree_add_uint(rpc_tree,
                              hf_rpc_reply_dup, tvb, 0,0, rpc_call->rep_num);
                        PROTO_ITEM_SET_GENERATED(tmp_item);
                  }
            }

            switch (reply_state) {

            case MSG_ACCEPTED:
                  offset = dissect_rpc_verf(tvb, rpc_tree, offset, msg_type, pinfo);
                  accept_state = tvb_get_ntohl(tvb,offset+0);
                  if (rpc_tree) {
                        proto_tree_add_uint(rpc_tree, hf_rpc_state_accept, tvb,
                              offset+0, 4, accept_state);
                  }
                  offset += 4;
                  switch (accept_state) {

                  case SUCCESS:
                        /* go to the next dissector */
                        break;

                  case PROG_MISMATCH:
                        vers_low = tvb_get_ntohl(tvb,offset+0);
                        vers_high = tvb_get_ntohl(tvb,offset+4);
                        if (rpc_tree) {
                              proto_tree_add_uint(rpc_tree,
                                    hf_rpc_programversion_min,
                                    tvb, offset+0, 4, vers_low);
                              proto_tree_add_uint(rpc_tree,
                                    hf_rpc_programversion_max,
                                    tvb, offset+4, 4, vers_high);
                        }
                        offset += 8;

                        /*
                         * There's no protocol reply, so don't
                         * try to dissect it.
                         */
                        dissect_rpc = FALSE;
                        break;

                  default:
                        /*
                         * There's no protocol reply, so don't
                         * try to dissect it.
                         */
                        dissect_rpc = FALSE;
                        break;
                  }
                  break;

            case MSG_DENIED:
                  reject_state = tvb_get_ntohl(tvb,offset+0);
                  if (rpc_tree) {
                        proto_tree_add_uint(rpc_tree,
                              hf_rpc_state_reject, tvb, offset+0, 4,
                              reject_state);
                  }
                  offset += 4;

                  if (reject_state==RPC_MISMATCH) {
                        vers_low = tvb_get_ntohl(tvb,offset+0);
                        vers_high = tvb_get_ntohl(tvb,offset+4);
                        if (rpc_tree) {
                              proto_tree_add_uint(rpc_tree,
                                    hf_rpc_version_min,
                                    tvb, offset+0, 4, vers_low);
                              proto_tree_add_uint(rpc_tree,
                                    hf_rpc_version_max,
                                    tvb, offset+4, 4, vers_high);
                        }
                        offset += 8;
                  } else if (reject_state==AUTH_ERROR) {
                        auth_state = tvb_get_ntohl(tvb,offset+0);
                        if (rpc_tree) {
                              proto_tree_add_uint(rpc_tree,
                                    hf_rpc_state_auth, tvb, offset+0, 4,
                                    auth_state);
                        }
                        offset += 4;
                  }

                  /*
                   * There's no protocol reply, so don't
                   * try to dissect it.
                   */
                  dissect_rpc = FALSE;
                  break;

            default:
                  /*
                   * This isn't a valid reply state, so we have
                   * no clue what's going on; don't try to dissect
                   * the protocol reply.
                   */
                  dissect_rpc = FALSE;
                  break;
            }
            break; /* end of RPC reply */

      default:
            /*
             * The switch statement at the top returned if
             * this was neither an RPC call nor a reply.
             */
            DISSECTOR_ASSERT_NOT_REACHED();
      }

      /* now we know, that RPC was shorter */
      if (rpc_item) {
            if (offset < 0)
                  THROW(ReportedBoundsError);
            tvb_ensure_bytes_exist(tvb, offset, 0);
            proto_item_set_end(rpc_item, tvb, offset);
      }

      if (!dissect_rpc) {
            /*
             * There's no RPC call or reply here; just dissect
             * whatever's left as data.
             */
            call_dissector(data_handle,
                tvb_new_subset(tvb, offset, -1, -1), pinfo, rpc_tree);
            return TRUE;
      }

      /* create here the program specific sub-tree */
      if (tree && (flavor != FLAVOR_AUTHGSSAPI_MSG)) {
            pitem = proto_tree_add_item(tree, proto_id, tvb, offset, -1,
                FALSE);
            if (pitem) {
                  ptree = proto_item_add_subtree(pitem, ett);
            }

            if (ptree) {
                  proto_item *tmp_item;

                  tmp_item=proto_tree_add_uint(ptree,
                        hf_rpc_programversion, tvb, 0, 0, vers);
                  PROTO_ITEM_SET_GENERATED(tmp_item);
                  if (rpc_prog && (rpc_prog->procedure_hfs->len > vers) )
                        procedure_hf = g_array_index(rpc_prog->procedure_hfs, int, vers);
                  else {
                        /*
                         * No such element in the GArray.
                         */
                        procedure_hf = 0;
                  }
                  if (procedure_hf != 0 && procedure_hf != -1) {
                        tmp_item=proto_tree_add_uint(ptree,
                              procedure_hf, tvb, 0, 0, proc);
                        PROTO_ITEM_SET_GENERATED(tmp_item);
                  } else {
                        tmp_item=proto_tree_add_uint_format(ptree,
                              hf_rpc_procedure, tvb, 0, 0, proc,
                              "Procedure: %s (%u)", procname, proc);
                        PROTO_ITEM_SET_GENERATED(tmp_item);
                  }
            }
      }

      /* we must queue this packet to the tap system before we actually
         call the subdissectors since short packets (i.e. nfs read reply)
         will cause an exception and execution would never reach the call
         to tap_queue_packet() in that case
      */
      tap_queue_packet(rpc_tap, pinfo, rpc_call);

      /* proto==0 if this is an unknown program */
      if( (proto==0) || !proto_is_protocol_enabled(proto)){
            dissect_function = NULL;
      }

      /*
       * Handle RPCSEC_GSS and AUTH_GSSAPI specially.
       */
      switch (flavor) {

      case FLAVOR_UNKNOWN:
            /*
             * We don't know the authentication flavor, so we can't
             * dissect the payload.
             */
            proto_tree_add_text(ptree, tvb, offset, -1,
                "Unknown authentication flavor - cannot dissect");
            return TRUE;

      case FLAVOR_NOT_GSSAPI:
            /*
             * It's not GSS-API authentication.  Just dissect the
             * payload.
             */
            offset = call_dissect_function(tvb, pinfo, ptree, offset,
                        dissect_function, progname);
            break;

      case FLAVOR_GSSAPI_NO_INFO:
            /*
             * It's GSS-API authentication, but we don't have the
             * procedure and service information, so we can't dissect
             * the payload.
             */
            proto_tree_add_text(ptree, tvb, offset, -1,
                "GSS-API authentication, but procedure and service unknown - cannot dissect");
            return TRUE;

      case FLAVOR_GSSAPI:
            /*
             * It's GSS-API authentication, and we have the procedure
             * and service information; process the GSS-API stuff,
             * and process the payload if there is any.
             */
            switch (gss_proc) {

            case RPCSEC_GSS_INIT:
            case RPCSEC_GSS_CONTINUE_INIT:
                  if (msg_type == RPC_CALL) {
                        offset = dissect_rpc_authgss_initarg(tvb,
                              ptree, offset, pinfo);
                  }
                  else {
                        offset = dissect_rpc_authgss_initres(tvb,
                              ptree, offset, pinfo);
                  }
                  break;

            case RPCSEC_GSS_DATA:
                  if (gss_svc == RPCSEC_GSS_SVC_NONE) {
                        offset = call_dissect_function(tvb,
                                    pinfo, ptree, offset,
                                    dissect_function,
                                    progname);
                  }
                  else if (gss_svc == RPCSEC_GSS_SVC_INTEGRITY) {
                        offset = dissect_rpc_authgss_integ_data(tvb,
                                    pinfo, ptree, offset,
                                    dissect_function,
                                    progname);
                  }
                  else if (gss_svc == RPCSEC_GSS_SVC_PRIVACY) {
                        offset = dissect_rpc_authgss_priv_data(tvb,
                                    ptree, offset);
                  }
                  break;

            default:
                  break;
            }
            break;

      case FLAVOR_AUTHGSSAPI_MSG:
            /*
             * This is an AUTH_GSSAPI message.  It contains data
             * only for the authentication procedure and not for the
             * application level RPC procedure.  Reset the column
             * protocol and info fields to indicate that this is
             * an RPC auth level message, then process the args.
             */
            if (check_col(pinfo->cinfo, COL_PROTOCOL)) {
                  col_set_str(pinfo->cinfo, COL_PROTOCOL, "RPC");
            }
            if (check_col(pinfo->cinfo, COL_INFO)) {
                  col_clear(pinfo->cinfo, COL_INFO);
                  col_append_fstr(pinfo->cinfo, COL_INFO,
                      "%s %s XID 0x%x",
                      match_strval(gss_proc, rpc_authgssapi_proc),
                      msg_type_name, xid);
            }

            switch (gss_proc) {

            case AUTH_GSSAPI_INIT:
            case AUTH_GSSAPI_CONTINUE_INIT:
            case AUTH_GSSAPI_MSG:
                  if (msg_type == RPC_CALL) {
                      offset = dissect_rpc_authgssapi_initarg(tvb,
                        rpc_tree, offset, pinfo);
                  } else {
                      offset = dissect_rpc_authgssapi_initres(tvb,
                        rpc_tree, offset, pinfo);
                  }
                  break;

            case AUTH_GSSAPI_DESTROY:
                  offset = dissect_rpc_data(tvb, rpc_tree,
                      hf_rpc_authgss_data, offset);
                  break;

            case AUTH_GSSAPI_EXIT:
                  break;
            }

            /* Adjust the length to account for the auth message. */
            if (rpc_item) {
                  proto_item_set_end(rpc_item, tvb, offset);
            }
            break;

      case FLAVOR_AUTHGSSAPI:
            /*
             * An RPC with AUTH_GSSAPI authentication.  The data
             * portion is always private, so don't call the dissector.
             */
            offset = dissect_auth_gssapi_data(tvb, ptree, offset);
            break;
      }

        if (tvb_length_remaining(tvb, offset) > 0) {
          /*
           * dissect any remaining bytes (incomplete dissection) as pure
           * data in the ptree
           */

          call_dissector(data_handle,
              tvb_new_subset(tvb, offset, -1, -1), pinfo, ptree);
        }

      /* XXX this should really loop over all fhandles registred for the frame */
      if(nfs_fhandle_reqrep_matching){
            switch (msg_type) {
            case RPC_CALL:
                  if(rpc_call && rpc_call->rep_num){
                        dissect_fhandle_hidden(pinfo,
                                    ptree, rpc_call->rep_num);
                  }
                  break;
            case RPC_REPLY:
                  if(rpc_call && rpc_call->req_num){
                        dissect_fhandle_hidden(pinfo,
                                    ptree, rpc_call->req_num);
                  }
                  break;
            }
      }

      return TRUE;
}

static gboolean
dissect_rpc_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
      return dissect_rpc_message(tvb, pinfo, tree, NULL, NULL, FALSE, 0,
          TRUE);
}

static void
dissect_rpc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
      if (!dissect_rpc_message(tvb, pinfo, tree, NULL, NULL, FALSE, 0,
          TRUE)) {
            if (tvb_length(tvb) != 0)
                  dissect_rpc_continuation(tvb, pinfo, tree);
      }
}


/* Defragmentation of RPC-over-TCP records */
/* table to hold defragmented RPC records */
static GHashTable *rpc_fragment_table = NULL;

static GHashTable *rpc_reassembly_table = NULL;

typedef struct _rpc_fragment_key {
      guint32 conv_id;
      guint32 seq;
      guint32 offset;
      /* xxx */
      guint32 start_seq;
} rpc_fragment_key;

static guint
rpc_fragment_hash(gconstpointer k)
{
      const rpc_fragment_key *key = (const rpc_fragment_key *)k;

      return key->conv_id + key->seq;
}

static gint
rpc_fragment_equal(gconstpointer k1, gconstpointer k2)
{
      const rpc_fragment_key *key1 = (const rpc_fragment_key *)k1;
      const rpc_fragment_key *key2 = (const rpc_fragment_key *)k2;

      return key1->conv_id == key2->conv_id &&
          key1->seq == key2->seq;
}

static void
show_rpc_fragheader(tvbuff_t *tvb, proto_tree *tree, guint32 rpc_rm)
{
      proto_item *hdr_item;
      proto_tree *hdr_tree;
      guint32 fraglen;

      if (tree) {
            fraglen = rpc_rm & RPC_RM_FRAGLEN;

            hdr_item = proto_tree_add_text(tree, tvb, 0, 4,
                "Fragment header: %s%u %s",
                (rpc_rm & RPC_RM_LASTFRAG) ? "Last fragment, " : "",
                fraglen, plurality(fraglen, "byte", "bytes"));
            hdr_tree = proto_item_add_subtree(hdr_item, ett_rpc_fraghdr);

            proto_tree_add_boolean(hdr_tree, hf_rpc_lastfrag, tvb, 0, 4,
                rpc_rm);
            proto_tree_add_uint(hdr_tree, hf_rpc_fraglen, tvb, 0, 4,
                rpc_rm);
      }
}

static void
show_rpc_fragment(tvbuff_t *tvb, proto_tree *tree, guint32 rpc_rm)
{
      if (tree) {
            /*
             * Show the fragment header and the data for the fragment.
             */
            show_rpc_fragheader(tvb, tree, rpc_rm);
            proto_tree_add_text(tree, tvb, 4, -1, "Fragment Data");
      }
}

static void
make_frag_tree(tvbuff_t *tvb, proto_tree *tree, int proto, gint ett,
    guint32 rpc_rm)
{
      proto_item *frag_item;
      proto_tree *frag_tree;

      if (tree == NULL)
            return;           /* nothing to do */

      frag_item = proto_tree_add_protocol_format(tree, proto, tvb, 0, -1,
          "%s Fragment", proto_get_protocol_name(proto));
      frag_tree = proto_item_add_subtree(frag_item, ett);
      show_rpc_fragment(tvb, frag_tree, rpc_rm);
}

void
show_rpc_fraginfo(tvbuff_t *tvb, tvbuff_t *frag_tvb, proto_tree *tree,
    guint32 rpc_rm, fragment_data *ipfd_head, packet_info *pinfo)
{
    proto_item *frag_tree_item;

      if (tree == NULL)
            return;           /* don't do any work */

      if (tvb != frag_tvb) {
            /*
             * This message was not all in one fragment,
             * so show the fragment header *and* the data
             * for the fragment (which is the last fragment),
             * and a tree with information about all fragments.
             */
            show_rpc_fragment(frag_tvb, tree, rpc_rm);

            /*
             * Show a tree with information about all fragments.
             */
            show_fragment_tree(ipfd_head, &rpc_frag_items, tree, pinfo, tvb, &frag_tree_item);
      } else {
            /*
             * This message was all in one fragment, so just show
             * the fragment header.
             */
            show_rpc_fragheader(tvb, tree, rpc_rm);
      }
}

static gboolean
call_message_dissector(tvbuff_t *tvb, tvbuff_t *rec_tvb, packet_info *pinfo,
    proto_tree *tree, tvbuff_t *frag_tvb, rec_dissector_t dissector,
    fragment_data *ipfd_head, guint32 rpc_rm, gboolean first_pdu)
{
      const char *saved_proto;
      volatile gboolean rpc_succeeded;

      /*
       * Catch the ReportedBoundsError exception; if
       * this particular message happens to get a
       * ReportedBoundsError exception, that doesn't
       * mean that we should stop dissecting RPC
       * messages within this frame or chunk of
       * reassembled data.
       *
       * If it gets a BoundsError, we can stop, as there's
       * nothing more to see, so we just re-throw it.
       */
      saved_proto = pinfo->current_proto;
      rpc_succeeded = FALSE;
      TRY {
            rpc_succeeded = (*dissector)(rec_tvb, pinfo, tree,
                frag_tvb, ipfd_head, TRUE, rpc_rm, first_pdu);
      }
      CATCH(BoundsError) {
            RETHROW;
      }
      CATCH(ReportedBoundsError) {
            show_reported_bounds_error(tvb, pinfo, tree);
            pinfo->current_proto = saved_proto;

            /*
             * We treat this as a "successful" dissection of
             * an RPC packet, as "dissect_rpc_message()"
             * *did* decide it was an RPC packet, throwing
             * an exception while dissecting it as such.
             */
            rpc_succeeded = TRUE;
      }
      ENDTRY;
      return rpc_succeeded;
}

int
dissect_rpc_fragment(tvbuff_t *tvb, int offset, packet_info *pinfo,
    proto_tree *tree, rec_dissector_t dissector, gboolean is_heur,
    int proto, int ett, gboolean defragment, gboolean first_pdu)
{
      struct tcpinfo *tcpinfo;
      guint32 seq;
      guint32 rpc_rm;
      volatile guint32 len;
      gint32 seglen;
      gint tvb_len, tvb_reported_len;
      tvbuff_t *frag_tvb;
      gboolean rpc_succeeded;
      gboolean save_fragmented;
      rpc_fragment_key old_rfk, *rfk, *new_rfk;
      conversation_t *conversation;
      fragment_data *ipfd_head;
      tvbuff_t *rec_tvb;

      if (pinfo == NULL || pinfo->private_data == NULL) {
            return 0;
      }
      tcpinfo = pinfo->private_data;

      if (tcpinfo == NULL) {
            return 0;
      }
      seq = tcpinfo->seq + offset;

      /*
       * Get the record mark.
       */
      if (!tvb_bytes_exist(tvb, offset, 4)) {
            /*
             * XXX - we should somehow arrange to handle
             * a record mark split across TCP segments.
             */
            return 0;   /* not enough to tell if it's valid */
      }
      rpc_rm = tvb_get_ntohl(tvb, offset);

      len = rpc_rm & RPC_RM_FRAGLEN;

      /*
       * Do TCP desegmentation, if enabled.
       *
       * reject fragments bigger than this preference setting.
       * This is arbitrary, but should at least prevent
       * some crashes from either packets with really
       * large RPC-over-TCP fragments or from stuff that's
       * not really valid for this protocol.
       */
      if (len > max_rpc_tcp_pdu_size)
            return 0;   /* pretend it's not valid */
      if (rpc_desegment) {
            seglen = tvb_length_remaining(tvb, offset + 4);

            if ((gint)len > seglen && pinfo->can_desegment) {
                  /*
                   * This frame doesn't have all of the
                   * data for this message, but we can do
                   * reassembly on it.
                   *
                   * If this is a heuristic dissector, just
                   * return 0 - we don't want to try to get
                   * more data, as that's too likely to cause
                   * us to misidentify this as valid.
                   *
                   * XXX - this means that we won't
                   * recognize the first fragment of a
                   * multi-fragment RPC operation unless
                   * we've already identified this
                   * conversation as being an RPC
                   * conversation (and thus aren't running
                   * heuristically) - that would be a problem
                   * if, for example, the first segment were
                   * the beginning of a large NFS WRITE.
                   *
                   * If this isn't a heuristic dissector,
                   * we've already identified this conversation
                   * as containing data for this protocol, as we
                   * saw valid data in previous frames.  Try to
                   * get more data.
                   */
                  if (is_heur)
                        return 0;   /* not valid */
                  else {
                        pinfo->desegment_offset = offset;
                        pinfo->desegment_len = len - seglen;
                        return -((gint32) pinfo->desegment_len);
                  }
            }
      }
      len += 4;   /* include record mark */
      tvb_len = tvb_length_remaining(tvb, offset);
      tvb_reported_len = tvb_reported_length_remaining(tvb, offset);
      if (tvb_len > (gint)len)
            tvb_len = len;
      if (tvb_reported_len > (gint)len)
            tvb_reported_len = len;
      frag_tvb = tvb_new_subset(tvb, offset, tvb_len,
          tvb_reported_len);

      /*
       * If we're not defragmenting, just hand this to the
       * disssector.
       */
      if (!defragment) {
            /*
             * This is the first fragment we've seen, and it's also
             * the last fragment; that means the record wasn't
             * fragmented.  Hand the dissector the tvbuff for the
             * fragment as the tvbuff for the record.
             */
            rec_tvb = frag_tvb;
            ipfd_head = NULL;

            /*
             * Mark this as fragmented, so if somebody throws an
             * exception, we don't report it as a malformed frame.
             */
            save_fragmented = pinfo->fragmented;
            pinfo->fragmented = TRUE;
            rpc_succeeded = call_message_dissector(tvb, rec_tvb, pinfo,
                tree, frag_tvb, dissector, ipfd_head, rpc_rm, first_pdu);
            pinfo->fragmented = save_fragmented;
            if (!rpc_succeeded)
                  return 0;   /* not RPC */
            return len;
      }

      /*
       * First, we check to see if this fragment is part of a record
       * that we're in the process of defragmenting.
       *
       * The key is the conversation ID for the conversation to which
       * the packet belongs and the current sequence number.
       * We must first find the conversation and, if we don't find
       * one, create it.  We know this is running over TCP, so the
       * conversation should not wildcard either address or port.
       */
      conversation = find_conversation(pinfo->fd->num, &pinfo->src, &pinfo->dst,
          pinfo->ptype, pinfo->srcport, pinfo->destport, 0);
      if (conversation == NULL) {
            /*
             * It's not part of any conversation - create a new one.
             */
            conversation = conversation_new(pinfo->fd->num, &pinfo->src, &pinfo->dst,
                pinfo->ptype, pinfo->srcport, pinfo->destport, 0);
      }
      old_rfk.conv_id = conversation->index;
      old_rfk.seq = seq;
      rfk = g_hash_table_lookup(rpc_reassembly_table, &old_rfk);

      if (rfk == NULL) {
            /*
             * This fragment was not found in our table, so it doesn't
             * contain a continuation of a higher-level PDU.
             * Is it the last fragment?
             */
            if (!(rpc_rm & RPC_RM_LASTFRAG)) {
                  /*
                   * This isn't the last fragment, so we don't
                   * have the complete record.
                   *
                   * It's the first fragment we've seen, so if
                   * it's truly the first fragment of the record,
                   * and it has enough data, the dissector can at
                   * least check whether it looks like a valid
                   * message, as it contains the start of the
                   * message.
                   *
                   * The dissector should not dissect anything
                   * if the "last fragment" flag isn't set in
                   * the record marker, so it shouldn't throw
                   * an exception.
                   */
                  if (!(*dissector)(frag_tvb, pinfo, tree, frag_tvb,
                      NULL, TRUE, rpc_rm, first_pdu))
                        return 0;   /* not valid */

                  /*
                   * OK, now start defragmentation with that
                   * fragment.  Add this fragment, and set up
                   * next packet/sequence number as well.
                   *
                   * We must remember this fragment.
                   */

                  rfk = se_alloc(sizeof(rpc_fragment_key));
                  rfk->conv_id = conversation->index;
                  rfk->seq = seq;
                  rfk->offset = 0;
                  rfk->start_seq = seq;
                  g_hash_table_insert(rpc_reassembly_table, rfk, rfk);

                  /*
                   * Start defragmentation.
                   */
                  ipfd_head = fragment_add_multiple_ok(tvb, offset + 4,
                      pinfo, rfk->start_seq, rpc_fragment_table,
                      rfk->offset, len - 4, TRUE);

                  /*
                   * Make sure that defragmentation isn't complete;
                   * it shouldn't be, as this is the first fragment
                   * we've seen, and the "last fragment" bit wasn't
                   * set on it.
                   */
                  if (ipfd_head == NULL) {
                        new_rfk = se_alloc(sizeof(rpc_fragment_key));
                        new_rfk->conv_id = rfk->conv_id;
                        new_rfk->seq = seq + len;
                        new_rfk->offset = rfk->offset + len - 4;
                        new_rfk->start_seq = rfk->start_seq;
                        g_hash_table_insert(rpc_reassembly_table, new_rfk,
                              new_rfk);

                        /*
                         * This is part of a fragmented record,
                         * but it's not the first part.
                         * Show it as a record marker plus data, under
                         * a top-level tree for this protocol.
                         */
                        make_frag_tree(frag_tvb, tree, proto, ett,rpc_rm);

                        /*
                         * No more processing need be done, as we don't
                         * have a complete record.
                         */
                        return len;
                  } else {
                        /* oddly, we have a first fragment, not marked as last,
                         * but which the defragmenter thinks is complete.
                         * So rather than creating a fragment reassembly tree,
                         * we simply throw away the partial fragment structure
                         * and fall though to our "sole fragment" processing below.
                         */
                  }
            }

            /*
             * This is the first fragment we've seen, and it's also
             * the last fragment; that means the record wasn't
             * fragmented.  Hand the dissector the tvbuff for the
             * fragment as the tvbuff for the record.
             */
            rec_tvb = frag_tvb;
            ipfd_head = NULL;
      } else {
            /*
             * OK, this fragment was found, which means it continues
             * a record.  This means we must defragment it.
             * Add it to the defragmentation lists.
             */
            ipfd_head = fragment_add_multiple_ok(tvb, offset + 4, pinfo,
                rfk->start_seq, rpc_fragment_table,
                rfk->offset, len - 4, !(rpc_rm & RPC_RM_LASTFRAG));

            if (ipfd_head == NULL) {
                  /*
                   * fragment_add_multiple_ok() returned NULL.
                   * This means that defragmentation is not
                   * completed yet.
                   *
                   * We must add an entry to the hash table with
                   * the sequence number following this fragment
                   * as the starting sequence number, so that when
                   * we see that fragment we'll find that entry.
                   *
                   * XXX - as TCP stream data is not currently
                   * guaranteed to be provided in order to dissectors,
                   * RPC fragments aren't guaranteed to be provided
                   * in order, either.
                   */
                  new_rfk = se_alloc(sizeof(rpc_fragment_key));
                  new_rfk->conv_id = rfk->conv_id;
                  new_rfk->seq = seq + len;
                  new_rfk->offset = rfk->offset + len - 4;
                  new_rfk->start_seq = rfk->start_seq;
                  g_hash_table_insert(rpc_reassembly_table, new_rfk,
                      new_rfk);

                  /*
                   * This is part of a fragmented record,
                   * but it's not the first part.
                   * Show it as a record marker plus data, under
                   * a top-level tree for this protocol,
                   * but don't hand it to the dissector
                   */
                  make_frag_tree(frag_tvb, tree, proto, ett, rpc_rm);

                  /*
                   * No more processing need be done, as we don't
                   * have a complete record.
                   */
                  return len;
            }

            /*
             * It's completely defragmented.
             *
             * We only call subdissector for the last fragment.
             * XXX - this assumes in-order delivery of RPC
             * fragments, which requires in-order delivery of TCP
             * segments.
             */
            if (!(rpc_rm & RPC_RM_LASTFRAG)) {
                  /*
                   * Well, it's defragmented, but this isn't
                   * the last fragment; this probably means
                   * this isn't the first pass, so we don't
                   * need to start defragmentation.
                   *
                   * This is part of a fragmented record,
                   * but it's not the first part.
                   * Show it as a record marker plus data, under
                   * a top-level tree for this protocol,
                   * but don't show it to the dissector.
                   */
                  make_frag_tree(frag_tvb, tree, proto, ett, rpc_rm);

                  /*
                   * No more processing need be done, as we
                   * only disssect the data with the last
                   * fragment.
                   */
                  return len;
            }

            /*
             * OK, this is the last segment.
             * Create a tvbuff for the defragmented
             * record.
             */

            /*
             * Create a new TVB structure for
             * defragmented data.
             */
            rec_tvb = tvb_new_real_data(ipfd_head->data,
                ipfd_head->datalen, ipfd_head->datalen);

            /*
             * Add this tvb as a child to the original
             * one.
             */
            tvb_set_child_real_data_tvbuff(tvb, rec_tvb);

            /*
             * Add defragmented data to the data source list.
             */
            add_new_data_source(pinfo, rec_tvb, "Defragmented");
      }

      /*
       * We have something to hand to the RPC message
       * dissector.
       */
      if (!call_message_dissector(tvb, rec_tvb, pinfo, tree,
          frag_tvb, dissector, ipfd_head, rpc_rm, first_pdu))
            return 0;   /* not RPC */
      return len;
}  /* end of dissect_rpc_fragment() */

/**
 * Scans tvb, starting at given offset, to see if we can find
 * what looks like a valid RPC-over-TCP reply header.
 *
 * @param tvb Buffer to inspect for RPC reply header.
 * @param offset Offset to begin search of tvb at.
 *
 * @return -1 if no reply header found, else offset to start of header
 *         (i.e., to the RPC record mark field).
 */

static int
find_rpc_over_tcp_reply_start(tvbuff_t *tvb, int offset)
{

/*
 * Looking for partial header sequence.  From beginning of
 * stream-style header, including "record mark", full ONC-RPC
 * looks like:
 *    BE int32    record mark (rfc 1831 sec. 10)
 *    ?  int32    XID (rfc 1831 sec. 8)
 *    BE int32    msg_type (ibid sec. 8, call = 0, reply = 1)
 *
 * -------------------------------------------------------------
 * Then reply-specific fields are
 *    BE int32    reply_stat (ibid, accept = 0, deny = 1)
 *
 * Then, assuming accepted,
 *   opaque_auth
 *    BE int32    auth_flavor (ibid, none = 0)
 *    BE int32    ? auth_len (ibid, none = 0)
 *
 *    BE int32    accept_stat (ibid, success = 0, errs are 1..5 in rpc v2)
 *
 * -------------------------------------------------------------
 * Or, call-specific fields are
 *    BE int32    rpc_vers (rfc 1831 sec 8, always == 2)
 *    BE int32    prog (NFS == 000186A3)
 *    BE int32    prog_ver (NFS v2/3 == 2 or 3)
 *    BE int32    proc_id (NFS, <= 256 ???)
 *   opaque_auth
 *    ...
 */

/* Initially, we search only for something matching the template
 * of a successful reply with no auth verifier.
 * Our first qualification test is search for a string of zero bytes,
 * corresponding the four guint32 values
 *    reply_stat
 *    auth_flavor
 *    auth_len
 *    accept_stat
 *
 * If this string of zeros matches, then we go back and check the
 * preceding msg_type and record_mark fields.
 */

const gint     cbZeroTail = 4 * 4;     /* four guint32s of zeros */
const gint     ibPatternStart = 3 * 4;    /* offset of zero fill from reply start */
const guint8 * pbWholeBuf;    /* all of tvb, from offset onwards */
const int      NoMatch = -1;

gint     ibSearchStart;       /* offset of search start, in case of false hits. */

const    guint8 * pbBuf;

gint     cbInBuf;       /* bytes in tvb, from offset onwards */

guint32  ulMsgType;
guint32  ulRecMark;

int      i;


      cbInBuf = tvb_reported_length_remaining(tvb, offset);

      /* start search at first possible location */
      ibSearchStart = ibPatternStart;

      if (cbInBuf < (cbZeroTail + ibSearchStart)) {
            /* nothing to search, so claim no RPC */
            return (NoMatch);
      }

      pbWholeBuf = tvb_get_ptr(tvb, offset, cbInBuf);
      if (pbWholeBuf == NULL) {
            /* probably never take this, as get_ptr seems to assert */
            return (NoMatch);
      }

      while ((cbInBuf - ibSearchStart) > cbZeroTail) {
            /* First test for long tail of zeros, starting at the back.
             * A failure lets us skip the maximum possible buffer amount.
             */
            pbBuf = pbWholeBuf + ibSearchStart + cbZeroTail - 1;
            for (i = cbZeroTail; i > 0;  i --)
                  {
                  if (*pbBuf != 0)
                        {
                        /* match failure.  Since we need N contiguous zeros,
                         * we can increment next match start so zero testing
                         * begins right after this failure spot.
                         */
                        ibSearchStart += i;
                        pbBuf = NULL;
                        break;
                        }

                  pbBuf --;
                  }

            if (pbBuf == NULL) {
                  continue;
            }

            /* got a match in zero-fill region, verify reply ID and
             * record mark fields */
            ulMsgType = pntohl (pbWholeBuf + ibSearchStart - 4);
            ulRecMark = pntohl (pbWholeBuf + ibSearchStart - ibPatternStart);

            if ((ulMsgType == RPC_REPLY) &&
                   ((ulRecMark & ~0x80000000) <= (unsigned) max_rpc_tcp_pdu_size)) {
                  /* looks ok, try dissect */
                  return (offset + ibSearchStart - ibPatternStart);
            }

            /* no match yet, nor egregious miss either.  Inch along to next try */
            ibSearchStart ++;
      }

      return (NoMatch);

}  /* end of find_rpc_over_tcp_reply_start() */

/**
 * Scans tvb for what looks like a valid RPC call / reply header.
 * If found, calls standard dissect_rpc_fragment() logic to digest
 * the (hopefully valid) fragment.
 *
 * With any luck, one invocation of this will be sufficient to get
 * us back in alignment with the stream, and no further calls to
 * this routine will be needed for a given conversation.  As if.  :-)
 *
 * Can return:
 *       Same as dissect_rpc_fragment().  Will return zero (no frame)
 *       if no valid RPC header is found.
 */

static int
find_and_dissect_rpc_fragment(tvbuff_t *tvb, int offset, packet_info *pinfo,
                                            proto_tree *tree, rec_dissector_t dissector,
                                            gboolean is_heur,
                                            int proto, int ett, gboolean defragment)
{

      int   offReply;
      int   len;


      offReply = find_rpc_over_tcp_reply_start(tvb, offset);
      if (offReply < 0) {
            /* could search for request, but not needed (or testable) thus far */
            return (0);    /* claim no RPC */
      }

      len = dissect_rpc_fragment(tvb, offReply,
                                             pinfo, tree,
                                             dissector, is_heur, proto, ett,
                                             defragment,
                                             TRUE /* force first-pdu state */);

      /* misses are reported as-is */
      if (len == 0)
            {
            return (0);
            }

      /* returning a non-zero length, correct it to reflect the extra offset
       * we found necessary
       */
      if (len > 0) {
            len += offReply - offset;
      }
      else {
            /* negative length seems to only be used as a flag,
             * don't mess it up until found necessary
             */
/*      len -= offReply - offset; */
      }

      return (len);

}  /* end of find_and_dissect_rpc_fragment */


/*
 * Can return:
 *
 *    NEED_MORE_DATA, if we don't have enough data to dissect anything;
 *
 *    IS_RPC, if we dissected at least one message in its entirety
 *    as RPC;
 *
 *    IS_NOT_RPC, if we found no RPC message.
 */
typedef enum {
      NEED_MORE_DATA,
      IS_RPC,
      IS_NOT_RPC
} rpc_tcp_return_t;

static rpc_tcp_return_t
dissect_rpc_tcp_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
    gboolean is_heur)
{
      int offset = 0;
      gboolean saw_rpc = FALSE;
      gboolean first_pdu = TRUE;
      int len;

      while (tvb_reported_length_remaining(tvb, offset) != 0) {
            /*
             * Process this fragment.
             */
            len = dissect_rpc_fragment(tvb, offset, pinfo, tree,
                dissect_rpc_message, is_heur, proto_rpc, ett_rpc,
                rpc_defragment, first_pdu);

            if ((len == 0) && first_pdu && rpc_find_fragment_start) {
                  /*
                   * Try discarding some leading bytes from tvb, on assumption
                   * that we are looking at the middle of a stream-based transfer
                   */
                  len = find_and_dissect_rpc_fragment(tvb, offset, pinfo, tree,
                         dissect_rpc_message, is_heur, proto_rpc, ett_rpc,
                         rpc_defragment);
            }

            first_pdu = FALSE;
            if (len < 0) {
                  /*
                   * We need more data from the TCP stream for
                   * this fragment.
                   */
                  return NEED_MORE_DATA;
            }
            if (len == 0) {
                  /*
                   * It's not RPC.  Stop processing.
                   */
                  break;
            }

            /* PDU tracking
              If the length indicates that the PDU continues beyond
              the end of this tvb, then tell TCP about it so that it
              knows where the next PDU starts.
              This is to help TCP detect when PDUs are not aligned to
              segment boundaries and allow it to find RPC headers
              that starts in the middle of a TCP segment.
            */
            if(!pinfo->fd->flags.visited){
                  if(len>tvb_reported_length_remaining(tvb, offset)){
                        pinfo->want_pdu_tracking=2;
                        pinfo->bytes_until_next_pdu=len-tvb_reported_length_remaining(tvb, offset);
                  }
            }
            offset += len;
            saw_rpc = TRUE;
      }
      return saw_rpc ? IS_RPC : IS_NOT_RPC;
}

static gboolean
dissect_rpc_tcp_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
      switch (dissect_rpc_tcp_common(tvb, pinfo, tree, TRUE)) {

      case IS_RPC:
            return TRUE;

      case IS_NOT_RPC:
            return FALSE;

      default:
            /* "Can't happen" */
            DISSECTOR_ASSERT_NOT_REACHED();
            return FALSE;
      }
}

static void
dissect_rpc_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
      if (dissect_rpc_tcp_common(tvb, pinfo, tree, FALSE) == IS_NOT_RPC)
            dissect_rpc_continuation(tvb, pinfo, tree);
}

/* Discard any state we've saved. */
static void
rpc_init_protocol(void)
{
      if (rpc_reassembly_table != NULL) {
            g_hash_table_destroy(rpc_reassembly_table);
            rpc_reassembly_table = NULL;
      }

      rpc_reassembly_table = g_hash_table_new(rpc_fragment_hash,
          rpc_fragment_equal);

      fragment_table_init(&rpc_fragment_table);
}

/* will be called once from register.c at startup time */
void
proto_register_rpc(void)
{
      static hf_register_info hf[] = {
            { &hf_rpc_reqframe, {
                  "Request Frame", "rpc.reqframe", FT_FRAMENUM, BASE_NONE,
                  NULL, 0, "Request Frame", HFILL }},
            { &hf_rpc_repframe, {
                  "Reply Frame", "rpc.repframe", FT_FRAMENUM, BASE_NONE,
                  NULL, 0, "Reply Frame", HFILL }},
            { &hf_rpc_lastfrag, {
                  "Last Fragment", "rpc.lastfrag", FT_BOOLEAN, 32,
                  &yesno, RPC_RM_LASTFRAG, "Last Fragment", HFILL }},
            { &hf_rpc_fraglen, {
                  "Fragment Length", "rpc.fraglen", FT_UINT32, BASE_DEC,
                  NULL, RPC_RM_FRAGLEN, "Fragment Length", HFILL }},
            { &hf_rpc_xid, {
                  "XID", "rpc.xid", FT_UINT32, BASE_HEX,
                  NULL, 0, "XID", HFILL }},
            { &hf_rpc_msgtype, {
                  "Message Type", "rpc.msgtyp", FT_UINT32, BASE_DEC,
                  VALS(rpc_msg_type), 0, "Message Type", HFILL }},
            { &hf_rpc_state_reply, {
                  "Reply State", "rpc.replystat", FT_UINT32, BASE_DEC,
                  VALS(rpc_reply_state), 0, "Reply State", HFILL }},
            { &hf_rpc_state_accept, {
                  "Accept State", "rpc.state_accept", FT_UINT32, BASE_DEC,
                  VALS(rpc_accept_state), 0, "Accept State", HFILL }},
            { &hf_rpc_state_reject, {
                  "Reject State", "rpc.state_reject", FT_UINT32, BASE_DEC,
                  VALS(rpc_reject_state), 0, "Reject State", HFILL }},
            { &hf_rpc_state_auth, {
                  "Auth State", "rpc.state_auth", FT_UINT32, BASE_DEC,
                  VALS(rpc_auth_state), 0, "Auth State", HFILL }},
            { &hf_rpc_version, {
                  "RPC Version", "rpc.version", FT_UINT32, BASE_DEC,
                  NULL, 0, "RPC Version", HFILL }},
            { &hf_rpc_version_min, {
                  "RPC Version (Minimum)", "rpc.version.min", FT_UINT32,
                  BASE_DEC, NULL, 0, "Program Version (Minimum)", HFILL }},
            { &hf_rpc_version_max, {
                  "RPC Version (Maximum)", "rpc.version.max", FT_UINT32,
                  BASE_DEC, NULL, 0, "RPC Version (Maximum)", HFILL }},
            { &hf_rpc_program, {
                  "Program", "rpc.program", FT_UINT32, BASE_DEC,
                  NULL, 0, "Program", HFILL }},
            { &hf_rpc_programversion, {
                  "Program Version", "rpc.programversion", FT_UINT32,
                  BASE_DEC, NULL, 0, "Program Version", HFILL }},
            { &hf_rpc_programversion_min, {
                  "Program Version (Minimum)", "rpc.programversion.min", FT_UINT32,
                  BASE_DEC, NULL, 0, "Program Version (Minimum)", HFILL }},
            { &hf_rpc_programversion_max, {
                  "Program Version (Maximum)", "rpc.programversion.max", FT_UINT32,
                  BASE_DEC, NULL, 0, "Program Version (Maximum)", HFILL }},
            { &hf_rpc_procedure, {
                  "Procedure", "rpc.procedure", FT_UINT32, BASE_DEC,
                  NULL, 0, "Procedure", HFILL }},
            { &hf_rpc_auth_flavor, {
                  "Flavor", "rpc.auth.flavor", FT_UINT32, BASE_DEC,
                  VALS(rpc_auth_flavor), 0, "Flavor", HFILL }},
            { &hf_rpc_auth_length, {
                  "Length", "rpc.auth.length", FT_UINT32, BASE_DEC,
                  NULL, 0, "Length", HFILL }},
            { &hf_rpc_auth_stamp, {
                  "Stamp", "rpc.auth.stamp", FT_UINT32, BASE_HEX,
                  NULL, 0, "Stamp", HFILL }},
            { &hf_rpc_auth_uid, {
                  "UID", "rpc.auth.uid", FT_UINT32, BASE_DEC,
                  NULL, 0, "UID", HFILL }},
            { &hf_rpc_auth_gid, {
                  "GID", "rpc.auth.gid", FT_UINT32, BASE_DEC,
                  NULL, 0, "GID", HFILL }},
            { &hf_rpc_authgss_v, {
                  "GSS Version", "rpc.authgss.version", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Version", HFILL }},
            { &hf_rpc_authgss_proc, {
                  "GSS Procedure", "rpc.authgss.procedure", FT_UINT32,
                  BASE_DEC, VALS(rpc_authgss_proc), 0, "GSS Procedure", HFILL }},
            { &hf_rpc_authgss_seq, {
                  "GSS Sequence Number", "rpc.authgss.seqnum", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Sequence Number", HFILL }},
            { &hf_rpc_authgss_svc, {
                  "GSS Service", "rpc.authgss.service", FT_UINT32,
                  BASE_DEC, VALS(rpc_authgss_svc), 0, "GSS Service", HFILL }},
            { &hf_rpc_authgss_ctx, {
                  "GSS Context", "rpc.authgss.context", FT_BYTES,
                  BASE_HEX, NULL, 0, "GSS Context", HFILL }},
            { &hf_rpc_authgss_major, {
                  "GSS Major Status", "rpc.authgss.major", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Major Status", HFILL }},
            { &hf_rpc_authgss_minor, {
                  "GSS Minor Status", "rpc.authgss.minor", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Minor Status", HFILL }},
            { &hf_rpc_authgss_window, {
                  "GSS Sequence Window", "rpc.authgss.window", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Sequence Window", HFILL }},
            { &hf_rpc_authgss_token_length, {
                  "GSS Token Length", "rpc.authgss.token_length", FT_UINT32,
                  BASE_DEC, NULL, 0, "GSS Token Length", HFILL }},
            { &hf_rpc_authgss_data_length, {
                  "Length", "rpc.authgss.data.length", FT_UINT32,
                  BASE_DEC, NULL, 0, "Length", HFILL }},
            { &hf_rpc_authgss_data, {
                  "GSS Data", "rpc.authgss.data", FT_BYTES,
                  BASE_HEX, NULL, 0, "GSS Data", HFILL }},
            { &hf_rpc_authgss_checksum, {
                  "GSS Checksum", "rpc.authgss.checksum", FT_BYTES,
                  BASE_HEX, NULL, 0, "GSS Checksum", HFILL }},
            { &hf_rpc_authgssapi_v, {
                  "AUTH_GSSAPI Version", "rpc.authgssapi.version",
                  FT_UINT32, BASE_DEC, NULL, 0, "AUTH_GSSAPI Version",
                  HFILL }},
            { &hf_rpc_authgssapi_msg, {
                  "AUTH_GSSAPI Message", "rpc.authgssapi.message",
                  FT_BOOLEAN, BASE_NONE, &yesno, 0, "AUTH_GSSAPI Message",
                  HFILL }},
            { &hf_rpc_authgssapi_msgv, {
                  "Msg Version", "rpc.authgssapi.msgversion",
                  FT_UINT32, BASE_DEC, NULL, 0, "Msg Version",
                  HFILL }},
            { &hf_rpc_authgssapi_handle, {
                  "Client Handle", "rpc.authgssapi.handle",
                  FT_BYTES, BASE_HEX, NULL, 0, "Client Handle", HFILL }},
            { &hf_rpc_authgssapi_isn, {
                  "Signed ISN", "rpc.authgssapi.isn",
                  FT_BYTES, BASE_HEX, NULL, 0, "Signed ISN", HFILL }},
            { &hf_rpc_authdes_namekind, {
                  "Namekind", "rpc.authdes.namekind", FT_UINT32, BASE_DEC,
                  VALS(rpc_authdes_namekind), 0, "Namekind", HFILL }},
            { &hf_rpc_authdes_netname, {
                  "Netname", "rpc.authdes.netname", FT_STRING,
                  BASE_DEC, NULL, 0, "Netname", HFILL }},
            { &hf_rpc_authdes_convkey, {
                  "Conversation Key (encrypted)", "rpc.authdes.convkey", FT_UINT32,
                  BASE_HEX, NULL, 0, "Conversation Key (encrypted)", HFILL }},
            { &hf_rpc_authdes_window, {
                  "Window (encrypted)", "rpc.authdes.window", FT_UINT32,
                  BASE_HEX, NULL, 0, "Windows (encrypted)", HFILL }},
            { &hf_rpc_authdes_nickname, {
                  "Nickname", "rpc.authdes.nickname", FT_UINT32,
                  BASE_HEX, NULL, 0, "Nickname", HFILL }},
            { &hf_rpc_authdes_timestamp, {
                  "Timestamp (encrypted)", "rpc.authdes.timestamp", FT_UINT32,
                  BASE_HEX, NULL, 0, "Timestamp (encrypted)", HFILL }},
            { &hf_rpc_authdes_windowverf, {
                  "Window verifier (encrypted)", "rpc.authdes.windowverf", FT_UINT32,
                  BASE_HEX, NULL, 0, "Window verifier (encrypted)", HFILL }},
            { &hf_rpc_authdes_timeverf, {
                  "Timestamp verifier (encrypted)", "rpc.authdes.timeverf", FT_UINT32,
                  BASE_HEX, NULL, 0, "Timestamp verifier (encrypted)", HFILL }},
            { &hf_rpc_auth_machinename, {
                  "Machine Name", "rpc.auth.machinename", FT_STRING,
                  BASE_DEC, NULL, 0, "Machine Name", HFILL }},
            { &hf_rpc_dup, {
                  "Duplicate Call/Reply", "rpc.dup", FT_NONE, BASE_NONE,
                  NULL, 0, "Duplicate Call/Reply", HFILL }},
            { &hf_rpc_call_dup, {
                  "Duplicate to the call in", "rpc.call.dup", FT_FRAMENUM, BASE_DEC,
                  NULL, 0, "This is a duplicate to the call in frame", HFILL }},
            { &hf_rpc_reply_dup, {
                  "Duplicate to the reply in", "rpc.reply.dup", FT_FRAMENUM, BASE_DEC,
                  NULL, 0, "This is a duplicate to the reply in frame", HFILL }},
            { &hf_rpc_value_follows, {
                  "Value Follows", "rpc.value_follows", FT_BOOLEAN, BASE_NONE,
                  &yesno, 0, "Value Follows", HFILL }},
            { &hf_rpc_array_len, {
                  "num", "rpc.array.len", FT_UINT32, BASE_DEC,
                  NULL, 0, "Length of RPC array", HFILL }},

            { &hf_rpc_time, {
                  "Time from request", "rpc.time", FT_RELATIVE_TIME, BASE_NONE,
                  NULL, 0, "Time between Request and Reply for ONC-RPC calls", HFILL }},

            { &hf_rpc_fragment_overlap,
            { "Fragment overlap",   "rpc.fragment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
                  "Fragment overlaps with other fragments", HFILL }},

            { &hf_rpc_fragment_overlap_conflict,
            { "Conflicting data in fragment overlap", "rpc.fragment.overlap.conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
                  "Overlapping fragments contained conflicting data", HFILL }},

            { &hf_rpc_fragment_multiple_tails,
            { "Multiple tail fragments found",  "rpc.fragment.multipletails", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
                  "Several tails were found when defragmenting the packet", HFILL }},

            { &hf_rpc_fragment_too_long_fragment,
            { "Fragment too long",  "rpc.fragment.toolongfragment", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
                  "Fragment contained data past end of packet", HFILL }},

            { &hf_rpc_fragment_error,
            { "Defragmentation error", "rpc.fragment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
                  "Defragmentation error due to illegal fragments", HFILL }},

            { &hf_rpc_fragment,
            { "RPC Fragment", "rpc.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
                  "RPC Fragment", HFILL }},

            { &hf_rpc_fragments,
            { "RPC Fragments", "rpc.fragments", FT_NONE, BASE_NONE, NULL, 0x0,
                  "RPC Fragments", HFILL }},
      };
      static gint *ett[] = {
            &ett_rpc,
            &ett_rpc_fragments,
            &ett_rpc_fragment,
            &ett_rpc_fraghdr,
            &ett_rpc_string,
            &ett_rpc_cred,
            &ett_rpc_verf,
            &ett_rpc_gids,
            &ett_rpc_gss_token,
            &ett_rpc_gss_data,
            &ett_rpc_array,
            &ett_rpc_authgssapi_msg,
            &ett_rpc_unknown_program,
      };
      module_t *rpc_module;

      proto_rpc = proto_register_protocol("Remote Procedure Call",
          "RPC", "rpc");
      /* this is a dummy dissector for all those unknown rpc programs */
      proto_register_field_array(proto_rpc, hf, array_length(hf));
      proto_register_subtree_array(ett, array_length(ett));
      register_init_routine(&rpc_init_protocol);

      rpc_module = prefs_register_protocol(proto_rpc, NULL);
      prefs_register_bool_preference(rpc_module, "desegment_rpc_over_tcp",
          "Reassemble RPC over TCP messages\nspanning multiple TCP segments",
          "Whether the RPC dissector should reassemble messages spanning multiple TCP segments."
          " To use this option, you must also enable \"Allow subdissectors to reassemble TCP streams\" in the TCP protocol settings.",
            &rpc_desegment);
      prefs_register_bool_preference(rpc_module, "defragment_rpc_over_tcp",
            "Reassemble fragmented RPC-over-TCP messages",
            "Whether the RPC dissector should defragment RPC-over-TCP messages.",
            &rpc_defragment);

      prefs_register_uint_preference(rpc_module, "max_tcp_pdu_size", "Maximum size of a RPC-over-TCP PDU",
            "Set the maximum size of RPCoverTCP PDUs. "
            " If the size field of the record marker is larger "
            "than this value it will not be considered a valid RPC PDU.",
             10, &max_rpc_tcp_pdu_size);

      prefs_register_bool_preference(rpc_module, "dissect_unknown_programs",
            "Dissect unknown RPC program numbers",
            "Whether the RPC dissector should attempt to dissect RPC PDUs containing programs that are not known to Wireshark. This will make the heuristics significantly weaker and elevate the risk for falsely identifying and misdissecting packets significantly.",
            &rpc_dissect_unknown_programs);

      prefs_register_bool_preference(rpc_module, "find_fragment_start",
            "Attempt to locate start-of-fragment in partial RPC-over-TCP captures",
            "Whether the RPC dissector should attempt to locate RPC PDU boundaries when initial fragment alignment is not known.  This may cause false positives, or slow operation.",
            &rpc_find_fragment_start);

      register_dissector("rpc", dissect_rpc, proto_rpc);
      rpc_handle = find_dissector("rpc");
      register_dissector("rpc-tcp", dissect_rpc_tcp, proto_rpc);
      rpc_tcp_handle = find_dissector("rpc-tcp");
      rpc_tap = register_tap("rpc");

      /*
       * Init the hash tables.  Dissectors for RPC protocols must
       * have a "handoff registration" routine that registers the
       * protocol with RPC; they must not do it in their protocol
       * registration routine, as their protocol registration
       * routine might be called before this routine is called and
       * thus might be called before the hash tables are initialized,
       * but it's guaranteed that all protocol registration routines
       * will be called before any handoff registration routines
       * are called.
       */
      rpc_progs = g_hash_table_new(rpc_prog_hash, rpc_prog_equal);
      rpc_procs = g_hash_table_new(rpc_proc_hash, rpc_proc_equal);
}

void
proto_reg_handoff_rpc(void)
{
      dissector_handle_t rpc_tcp_handle;
      dissector_handle_t rpc_udp_handle;

      /* tcp/udp port 111 is used by portmapper which is an onc-rpc service.
         we register onc-rpc on this port so that we can choose RPC in
         the list offered by DecodeAs, and so that traffic to or from
         port 111 from or to a higher-numbered port is dissected as RPC
         even if there's a dissector registered on the other port (it's
         probably RPC traffic from some randomly-chosen port that happens
         to match some port for which we have a dissector)
      */
      rpc_tcp_handle = create_dissector_handle(dissect_rpc_tcp, proto_rpc);
      dissector_add("tcp.port", 111, rpc_tcp_handle);
      rpc_udp_handle = create_dissector_handle(dissect_rpc, proto_rpc);
      dissector_add("udp.port", 111, rpc_udp_handle);

      heur_dissector_add("tcp", dissect_rpc_tcp_heur, proto_rpc);
      heur_dissector_add("udp", dissect_rpc_heur, proto_rpc);
      gssapi_handle = find_dissector("gssapi");
      data_handle = find_dissector("data");
}

Generated by  Doxygen 1.6.0   Back to index